

Prof. Dr. Heinrich Bülthoff

http://www.mycopter.eu

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 266470

Personal aviation

European Commission, Out of the box – Ideas about the future of air transport, 2007

Motivation for personal aviation

100 Billion Euro is lost yearly in the EU due to congestion

"Green Paper – Towards a new culture of urban mobility," Sept. 2007, Commission of the European Countries, Brussels.

Heinrich Bülthoff, Max Planck Institute for Biological Cybernetic

Motivation for personal aviation

20x more fuel is wasted in the USA in traffic jams than is used by the entire General Aviation fleet

"2009 Urban Mobility Report," The Texas A&M University System, 2009

Motivation for personal aviation

In large European cities, car drivers spend more than 50 hours per year in traffic jams

"Roadmap to a Single European Transport Area," 2011

20/11/

Pioneering the air transport of the future

"Designing the air vehicle is only a relative small part of overcoming the challenges... The other challenges remain..." [EC, 2007]

It is necessary to explore

- "innovative technologies that might facilitate the step change required for air transport" [FP7]
- "technologies ... which will enable future individual air transportation" [FP7]

"Personal air transport ... has been regarded as a possible solution to the ever increasing congestion in road traffic, providing at the same time greater speed and flexibility" [FP7]

> European Commission, Out of the box – Ideas about the future of air transport, 2007 FP7 Transport call for research, November 2007

EU-project myCopter

- Duration: Jan 2011 Dec 2014
- Project cost: €4,287,529
- Project funding: € 3,424,534

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Personal Aerial Vehicle (PAV)

Technology exists to build aircraft for individual transport

 different concepts have already been developed

Drawbacks of current designs

- not for everyone (pilot license)
- compromise between car and plane
- needs infrastructure (landing strip)
- focus on vehicle design instead of an integrated transport system

http://www.mycopter.eu

Enabling technologies for personal aviation

Project organisation

Piloting PAVs

Develop PAV Handling Qualities

Challenges

- Flying a helicopter is difficult and requires much training
- It is not clear which skills prospective pilots should have when he is supported by automation

UNIVERSITY OF LIVERPOOL

WP2: Flight simulation and training

- Development and analysis of flight dynamics PAV models
- Developing training requirements for flight-naïve pilots
- From driver license to PAV license with minimal training cost

Human-machine interfaces

Develop human-machine interfaces that make flying as easy as driving a car

Challenges

- Current flight controls and displays are not intuitive
- Multisensory perception is not taken into account
- No reliable objective measurements of pilot workload

Max-Planck-Institut für biologische Kybernetik

WP3: Human-machine interface for controlling a PAV

- Design and evaluate novel concepts for human-machine interfaces
- Develop ways to measure pilot workload

WP6: PAV operational system concepts

- Verify operational system concepts in flight
- Novel steering wheel concepts for PAV

Novel approaches to automation

Develop robust novel algorithms for visionbased control and navigation

Challenges

- Current air traffic control is not suitable for PAV flight
- Instead we will do what every VFR pilot does
- looking outside of the cockpit for
 - Obstacles / other traffic
 - Surfaces to land on
- but we replace eyes and brain by cameras and computer vision

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

WP4: Control and navigation of a single PAV

- Develop control strategies for automating PAV flight
- vision-based control of flight path

WP5: Navigation in the air and interaction with other traffic

- Replace centralized air-traffic control with onboard and distributed control
- Vision-based landing place assessment for emergency landings

Exploring the socio-technological environment

Generate knowledge on the demands and preferences of society towards PAVs

Challenges

- Investigating where PAVs could have an impact
- Identifying major hurdles for introducing PAVs
- User expectations and objections

WP7: Exploring the socio-technological environment of PAVs

- Develop scenarios for PAV use (personal or shared)
- What infrastructure is necessary
- What should be the main use (commuter or leisure)

A vision from the Swiss Energy and Climate Summit

