myCopter - Enabling Technologies for Personal Aerial Transportation Systems

Prof. Dr. Heinrich Bülthoff

myc@pter

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 266470

myc@pter

Personal aviation

myc@pter

Motivation for personal aviation isin the EU due to congestion
"Green Paper - Towards a new culture of urban mobility," Sept. 2007, Commission of the European Countries, Brussels.

Motivation for personal aviation

20. ${ }^{2}$ more fuellis wasted in the USA in traffic jams than is used by the

 entire General Aviation fleet"2009 Urban Mobility Report," The Texas AqM University System, 2009

myc@pter

Motivation for personal aviation

In large European cities, car drivers

 spend more than 50 hours ${ }^{\text {epsos.de }}$per year in trafficifams
"Roadmap to a Single European Transport Area," 2011

Pioneering the air transport of the future

"Designing the air vehicle is only a relative small part of overcoming the challenges... The other challenges remain..." [EC, 2007]

It is necessary to explore

- "innovative technologies that might facilitate the step change required for air transport" [FP7]
- "technologies ... which will enable future individual air transportation" [FP7]
"Personal air transport ... has been regarded as a possible solution to the ever increasing congestion in road traffic, providing at the same time greater speed and flexibility" [FP7]

myc@pter

EU-project myCopter

- Duration: Jan 2011 - Dec 2014
- Project cost: €4,287,529
- Project funding: € 3,424,534

x-Planck-Institut Max-Planck-Institut
für biologische Kybernetik

myc@pter

Personal Aerial Vehicle (PAV)

Technology exists to build aircraft for individual transport

- different concepts have already been developed

Drawbacks of current designs

- not for everyone (pilot license)
- compromise between car and plane
- needs infrastructure (landing strip)
- focus on vehicle design instead of an integrated transport system

Enabling technologies for personal aviation

myc@pter

Project organisation

Piloting PAVs

Develop PAV Handling Qualities

Challenges

- Flying a helicopter is difficult and requires much training
- It is not clear which skills prospective pilots should have when he is supported by automation

WP2: Flight simulation and training

Objectives

- Development and analysis of flight dynamics PAV models
- Developing training requirements for flight-naïve pilots
- From driver license to PAV license with minimal training cost

Human-machine interfaces

Develop human-machine interfaces that make flying as easy as driving a car

Challenges

- Current flight controls and displays are not intuitive
- Multisensory perception is not taken into account
- No reliable objective measurements of pilot workload

Max-Planck-Institut für biologische Kybernetik

WP3: Human-machine interface for controlling a PAV

Objective

- Design and evaluate novel concepts for human-machine interfaces
- Develop ways to measure pilot workload

WP6: PAV operational system concepts

Objective

- Verify operational system concepts in flight
- Novel steering wheel concepts for PAV

Novel approaches to automation

Develop robust novel algorithms for visionbased control and navigation

Challenges

- Current air traffic control is not suitable for PAV flight
- Instead we will do what every VFR pilot does
- looking outside of the cockpit for
- Obstacles / other traffic
- Surfaces to land on
- but we replace eyes and brain by cameras and computer vision

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

WP4: Control and navigation of a single PAV

Objective

- Develop control strategies for automating PAV flight
- vision-based control of flight path

(P)fl

ÉCOLE POLYTECHNIQUE fÉDÉRALE DE LAUSANNE

WP5: Navigation in the air and interaction with other traffic

Objective

- Replace centralized air-traffic control with onboard and distributed control
- Vision-based landing place assessment for emergency landings

Exploring the socio-technological environment

Generate knowledge on the demands and preferences of society towards PAVs

Challenges

- Investigating where PAVs could have an impact
- Identifying major hurdles for introducing PAVs
- User expectations and objections

Karlsruhe Institute of Technology

WP7: Exploring the socio-technological environment of PAVs

Objective

- Develop scenarios for PAV use (personal or shared)
- What infrastructure is necessary
- What should be the main use (commuter or leisure)

A vision from the Swiss Energy and Climate Summit

