Versatile Distributed Pose Estimation and Sensor
Self-Calibration for an Autonomous MAV

Stephan Weiss, Markus W. Achtelik, Margarita Chli, Roland Siegwart

Abstract—1In this paper, we present a versatile framework
to enable autonomous flights of a Micro Aerial Vehicle (MAV)
which has only slow, noisy, delayed and possibly arbitrar-
ily scaled measurements available. Using such measurements
directly for position control would be practically impossible
as MAVs exhibit great agility in motion. In addition, these
measurements often come from a selection of different onboard
sensors, hence accurate calibration is crucial to the robustness
of the estimation processes. Here, we address these problems
using an EKF formulation which fuses these measurements with
inertial sensors. We do not only estimate pose and velocity of
the MAYV, but also estimate sensor biases, scale of the position
measurement and self (inter-sensor) calibration in real-time.
Furthermore, we show that it is possible to obtain a yaw
estimate from position measurements only. We demonstrate
that the proposed framework is capable of running entirely
onboard a MAV performing state prediction at the rate of
1 kHz. Our results illustrate that this approach is able to handle
measurement delays (up to 500ms), noise (std. deviation up to
20 cm) and slow update rates (as low as 1 Hz) while dynamic
maneuvers are still possible. We present a detailed quantitative
performance evaluation of the real system under the influence
of different disturbance parameters and different sensor setups
to highlight the versatility of our approach.

I. INTRODUCTION

The research in autonomous micro helicopters is advanc-
ing and evolving rapidly leading to great progress over the
past few years. However, current solutions lack the robust-
ness and flexibility to general conditions that is required in
order to leave the controlled laboratory environments. As a
result, we are yet to see truly autonomous flights in general
environments without reliance on unrealistic assumptions
like uninterrupted GPS signal, perfect communication link to
a ground station for off-board processing/control or (almost
perfect) pose measurements from motion capture systems
(e.g. Vicon). Only after solving these issues, higher level
tasks such as autonomous exploration, swarm operation and
large trajectory planning can be tackled.

Autonomous flights in unknown environments exclude the
use of motion capture systems. Using GPS is not always
reliable due to effects like shadowing or multipath in city-
like environments. Therefore, commonly used sensors for
pose estimation are stereo and monocular cameras as well
as laser scanners. Due to the power, weight and computation

The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7) under
grant agreements n. 231855 (sFly) and n.266470 (myCopter). Stephan
Weiss and Markus Achtelik are currently PhD students and Margarita
Chli is a senior researcher at the ETH Zurich (email: {stephan.weiss,
markus.achtelik, margarita.chli} @mavt.ethz.ch). Roland Siegwart is full
professor at the ETH Zurich and head of the Autonomous Systems Lab
(email: r.siegwart@ieee.org).

Fig. 1: The hexacopter which is used for the experimental analysis during
an autonomous flight with the proposed framework

limitations inherent in the field of MAVs, the sensor-feeds
and the algorithms that process them usually yield slow
and noisy update rates including delays, and in the case of
monocular vision, unknown scale of position measurements.
However, an accurate and timely pose and velocity estimate
is crucial for proper and safe autonomous flights of a MAV.

Measurements from GPS or a Leica Total Station' might
be limited to position information only. In order to perform
position control, errors must be transformed from world- to
body-fixed coordinates such that the appropriate corrections
can be computed. It is therefore essential to have an estimate
of the heading (yaw) of the helicopter. Using a magnetic
compass for yaw measurements is often not reliable enough
and prone to disturbances. In this work, we show that it is
possible to estimate yaw from body accelerations and world-
fixed position measurements only.

For real systems, it is impractical having to re-run the
calibration module every time the sensor suite of the MAV is
to be used. It is, however, important to estimate the biases of
the IMU and the inter-sensor calibration parameters (between
IMU and any additional sensors). In the proposed framework,
we apply the findings in [1], [2], [3] and show that we can
estimate these calibration parameters online. Some arbitrary
movements at the beginning of the flight are sufficient for
the convergence of these calibration parameters. As a result,
the MAV sensor suite is rendered truly power-on-and-go.

The aim of this work is to provide a versatile and modular
EKF framework which tackles pose estimation and inter-
sensor calibration not only as a theoretical construct, but
also realize this on a working MAV system operating in
real-time. Our approach achieves state prediction at 1kHz
while the framework is kept modular to allow any kind of
position/pose measurements to be incorporated quickly.

Yor generally, an external system measuring the 3D position of the MAV

II. RELATED WORK

The weight and power constraints on MAVs limit the
choices of sensors for accurate MAV state estimation. Hence,
in the following review we focus on the use of cameras, GPS
and IMU sensors to achieve this task.

A promising approach addressing IMU and camera cali-
bration appears in [3], which was recently refined by Kelly
and Sukhatme in [2] as a major step towards power-on-
and-go systems. In the latter work, the authors used all
information from the two sensors to statistically optimally
estimate the 6DoF IMU pose, the inter-sensor calibration,
the visual scale factor arising in monocular systems, and
the gravity vector in the Vision frame. In [1], we described
an incremental improvement to make this approach modular
and suitable for multiple sensors. From theory to practice
however, there is a big step, hence in this paper, we realize
our proposed approach on a real system performing all pro-
cessing onboard and in real-time, underlining the modularity,
flexibility and robustness which are crucial for real world
applications.

Real-time visual-inertial navigation using an iterated EKF
has been shown in [4] exhibiting a complexity which grows
at least quadratically with the number of features, rendering
the method unsuitable for large-scale robot navigation. The
more efficient approaches in [5] and [6] considered pairwise
images for visual odometry and fused the output with inertial
measurements in an EKF. The authors also used an additional
altimeter for solving for the unknown scale of the vision
algorithm. Their proposed EKF approach is linear in the
number of features and quadratic in the number of included
camera poses. It is worth mentioning, however, that none of
these works solve for inter-sensor calibration nor provide the
possibility of augmenting the system with additional sensors
like the work in this paper.

Along similar lines as the work of Kelly and Sukhatme,
are the works in [7] and [8], where the IMU is tightly
coupled into an EKF SLAM framework with the extension to
new features. While the authors in [7] showed an accurate
large outdoor trajectory using their approach on a car, the
authors in [8] made use of a hand-held device to estimate
the metric depth of a natural scene. Regarding the filtering
strategy, these approaches are robust as they take all cross-
couplings of the observed features into account. However,
the computational cost of EKF SLAM is O(N?) for N
features, preventing long-term runs unless sub-mapping is
performed though at the cost of losing cross-couplings. In
[9], the camera, IMU and GPS measurements are fused in
an EKF SLAM framework, only their formulation leads to
a state dimension of 10* which is clearly unmanageable on
a platform with limited calculation power. Moreover, they
assume a known inter-sensor calibration.

In [10], the authors present a commercially available
GPS/INS solution also accounting for the car’s heading (yaw)
angle. Their post-mission (i.e. offline) implementation also
estimates the vector between IMU and GPS sensor. The
sensors used in that work are not bound to strong weight

constraints and are sufficiently precise to project the Earth’s
rate vector onto the rate gyro to determine heading.

Perhaps the most relevant work is [1], where we developed
the theory for our filtering framework. In this paper, we
perform an observability analysis for obtaining yaw using
a position-only measurement and then focus on the practical
implementation and the quantitative evaluation of our frame-
work. The assessment of the performance and practicality of
this EKF framework is crucial as it can only be performed
following its actual implementation on a real system — the
true effect of all the assumptions revealed and any inaccu-
racies due to modeling/linearization are identified only then.
The most relevant caveats are the assumptions of a Gaussian,
linear and discrete world. Even though the sensor readings
may be well-approximated by Gaussian distributions, they
certainly get distorted after applying the non-linear equa-
tions. Moreover, discretization effects may lead to instability
of the system. Hence, we conduct a thorough quantitative
evaluation to reveal consistent operation of a highly robust
and modular filtering framework, running online and onboard
a MAV.

III. SYSTEM SETUP

The MAV we use is a prototype of a hexacopter from
Ascending Technologies” (AscTec) as it is shown in Fig. 1.
It is a helicopter driven by six rotors, symmetric to the
center of mass. The control is performed solely by changing
the rotation speed of the rotors. Equipment and behavior
is similar to the “AscTec Pelican” quadrocopter, which is
described in detail in [11]. The key features are up to 500 g
payload, improved vibration damping for the sensors and the
Flight Control Unit (FCU) “AscTec Autopilot”. This FCU
features a complete IMU and two 32 Bit, 60 MHz ARM-7
microcontrollers used for data fusion and flight control.

The so-called Low Level Processor (LLP) is considered
as a black box which manages the hardware and performs
IMU sensor data fusion for attitude control. The other
microcontroller, the High Level Processor (HLP) is dedicated
for custom code. IMU data is provided at an update rate of
1kHz via a high speed serial interface from the LLP. In
particular, this comprises body accelerations, body angular
velocities, magnetic compass, height measured by an air
pressure sensor and the estimated attitude of the vehicle. On
the HLP, a position controller based on nonlinear dynamic
inversion and reference model based setpoint following is
implemented which we described in detail in [11].

For the computationally more expensive onboard pro-
cessing tasks, we outfitted the helicopter with an onboard
1.6 GHz Intel Atom Based embedded computer, available
from Ascending Technologies. This computer is equipped
with 1 GB RAM, a MicroSD card slot for the operating
system, 802.11n WiFi, a Compact Flash slot, USB 2.0 inter-
faces for external sensors and serial ports for communication
to the HLP. We run Ubuntu Linux 10.04 on our onboard

Zwww.asctec.de

computer and use the ROS 3 framework as a middleware for
communication, parameters and monitoring of our processes.

Also crucial for the whole system to work is accurate time
synchronization between all involved parts. Ground station(s)
and Atom-computer are synchronized via the Network Time
Protocol (NTP) whereas between Atom-computer and HLP
time synchronization packets are exchanged. Transfer delay
and jitter are then estimated in a NTP like way.

IV. STATE ESTIMATION FOR MAVS

An EKF framework generally consists of a prediction and
an update step. As we describe later, we use this to distribute
the computational load to different units on the MAV. We
first give an overview of the underlying structure of the EKF
framework in [1] and then discuss the different measurements
a sensor can yield as an update.

A. Inertial Sensor Model

We assume that the inertial measurements contain a certain
bias b and white Gaussian noise n. Thus, for the real angular
velocities w and the real accelerations a we have

W= Wy — b, —ng, a=am—bg —ng (h

The subscript m denotes the measured value. The dynamics
of the non-static bias b are modeled as a random process:

by =np, ba=mp, 2)

B. State Representation

The state of the filter is composed of the position of the
IMU p’, in the inertial world frame, its velocity v?, and its
attitude quaternion ¢’ describing a rotation from the inertial
to the IMU frame. We also add the gyro and acceleration
biases b, and b, as well as a possible measurement scale
factor A. The calibration states are the rotation from the IMU
frame to the measurement sensor frame ¢; and the distance
between these two sensors p;. Note that the calibration states
can be omitted and set to a calibrated constant making the
filter more robust [7]. For completeness we keep them in the
filter state. This yields a 24-element state vector X:

iT

X = {pi, v, g bT b A p} ¢} 3)

The following differential equations govern the state:

Pw = Uy 4)
U = Clgiy(@m —ba—n4) — g 5)
i 1 %

v = iﬂ(wm - bw - nw)qw (6)

by =nb, ba=mp, A=0 pi=0 g = (7)

a

With ¢ as the gravity vector in the world frame and Q(w)
as the quaternion multiplication matrix of w. We assume the
scale drifts spatially and not temporally, thus A=0. Eq. 4)
to Eq. (7) already reveal, that the base state prediction only
needs very little computation power.

3 WWW.ros.org

More details on the calculus of the system propagation and
covariance matrices F,; and ()4, respectively can be found
in our previous work [1]. With the discretized error state
propagation and error process noise covariance matrices, we
can propagate the state as follows:

1) propagate the state variables following Eq. (4) to
Eq. (7). For the quaternion, we use the 1% order
integration described in [12].

2) calculate Fy; and @4 as proposed in [1]

3) compute the propagated state covariance matrix ac-
cording to the filter equation

Pyi1jp = FaPyi Py + Qu 3

Note that the computational burden is on the prediction
of the NxN state covariance matrix P with N states. We
discuss this later on in Section V-A.

C. Measurement Models

The propagation model discussed above is the core in our
EKF framework making the IMU an indispensable sensor of
the system. However, we do not see this as restriction since
almost all airborne navigation systems are able to bear an
IMU. MEMS IMUs are cheap, small and lightweight such
that they are very applicable on almost any robotic platform.
Around this core sensor, we can have additional sensing
modalities to enable robust MAV navigation. In particular,
here we analyze a 6DoF pose sensor (e.g. a camera or
Vicon system) and a 3DoF position sensor (e.g. GPS or
laser tracker). Other sensors can also be used, given the
observability analysis confirms the observability of the used
states. Fig. 2 depicts the setup with the coordinate frames,
sensors and state variables discussed below.

robot body

Xw

Fig. 2: Setup depicting the robot body with its sensors w.r.t. a world
reference frame. The system’s state as described in Section IV-B is X =
{p, vi, &, bw ba A p$ g} } whereas p3, and g5, denote the robot’s sensor
measurements in (a possibly scaled) position and attitude respectively in a
world frame. Depending on the type of sensor, only one of the measurements
is available (i.e. GPS or laser tracker only measure the 3D position pj,
whereas a camera or Vicon system measures both).

1) Measurement from a 6DoF pose sensor: While the
measurement of such a sensor has been addressed in [1]
(camera), we state the most relevant information for com-
pleteness here.

For the possibly scaled camera position measurement pj,
obtained from the visual algorithm, we have the following
measurement model

zp =3y = (D + Ol \pHA + 1y ©)

with C,: y as the IMU’s attitude in the world frame.

For the rotation measurement we apply the notion of an
error quaternion. The vision algorithm yields the rotation
from the vision frame to the camera frame ¢;,. We can model
this as

Zg=q =q} ®4q, (10)

A non-linear observability analysis as suggested in [13]
and done in [2] reveals that all states are observable including
the inter-sensor calibration states p; (distance from the
IMU to the sensor) and ¢ (rotation from the IMU to the
sensor). This is true as long as the robot excites the IMU’s
accelerometer and gyroscopes in at least two axes as proved
in [2], [3].

2) Measurement from a 3DoF position: Given the modu-
lar setup of [1], we can also consider a different measurement
sensor than a camera yielding the 6DoF pose. Most relevant
to practical applications is a sensor yielding the 3DoF
position of the robot in a world frame. Such a sensor might
be GPS or a laser tracking system *.

For the sensor’s position measurement p; we have the
same measurement model as in Eq. (9) except that the frame
indices s now indicate the frame of the 3DoF position sensor
and not the camera frame.

Since such a position sensor only measures the position of
the robot in a world frame, the rotation of the sensor w.r.t.
the IMU is irrelevant. We omit thus the state ¢ from the
system and only keep the translational calibration state p;
(i.e. 3D translation from IMU to the sensor).

The non-linear observability analysis reveals that all states
are observable including the inter-sensor calibration state p;
(distance from the IMU to the sensor) and also the absolute
yaw angle of the robot. This is only true if we have excitation
in at least two linear directions (i.e. acceleration in at least
two axes). This is intuitively clear since the double-integrated
IMU accelerometers contrast with the measured position of
the measurement sensor. This contrast leads to observability
of the yaw angle. As an illustrative example, we assume
the IMU readings to yield positive acceleration in x and the
robot’s attitude is identical with the world frame (i.e. unit
rotation). Double-integration of the IMU readings leads to
a positive displacement in world x. If the position sensor
measures a displacement in positive y in world, this indicates
that our assumption of unit-rotation is 90° off in yaw. For
disambiguation and full state observability, the observability
analysis indicates the need of acceleration in more than one
(i.e. minimal two) axes.

V. IMPLEMENTATION OF DISTRIBUTED STATE
ESTIMATION

In [1] we thoroughly developed the theory for our filter
framework and recapitulated it in a condensed form above
with the addition of the yaw observability using a position-
only measurement. In this section, we present how the filter

4We use a Total Station laser tracking system from Leica yielding the
3DoF position with millimeter precision at about 7Hz and a range of over
several hundred meters.

framework is implemented and how its tasks are distributed
in our system.

A. Distribution of Processing Tasks

In Section IV-B we noted that the computational burden
is in the prediction of the covariance matrix. Note that the
measurements only imply a matrix inversion of the size of
the number of measurements (e.g. 6 x 6 for a 6DoF pose
sensor). In addition, the update frame-rate is usually much
lower than the prediction frame-rate>. Here, we define three
processing tasks: (a) the pure state prediction as in Eq. (4)
to Eq. (7), (b) the covariance prediction as in Eq. (8) and (c)
the full update step.

Task (a) is the least computationally demanding while it
yields the most recent best guess of the system state (i.e.
robot pose). For controlling a MAYV, this is the most (time)
critical part and should be executed at high rates with the
least possible delay to allow fast response to disturbances or
to enable dynamic flights. Since IMU data is available with
almost no delay at a rate of 1 kHz at the user programmable
“high level processor” (HLP) of our MAV (see Section III),
we implemented this part on the HLP executed at a rate of
1 kHz. Note that this time critical part is ensured to be exe-
cuted in real-time which softens some real-time constraints
for the remaining tasks being executed on a standard non-
real-time operating system.

The computationally more expensive tasks (b) and (c) are
implemented separately on the onboard Atom computer. The
HLP sends its state predictions to the Atom computer over a
high speed serial link, while the Atom computer sends back
state corrections every time a measurement update arrives.
Crucial for this to work is accurate time synchronization
between HLP and Atom computer which we implemented
in a lightweight NTP like approach.

As it can be seen in Fig. 3, the current state predicted by
the HLP is exchanged only at a rate of 100 Hz. This means
that we predict the covariance at 100 Hz while the state
is predicted at 1 kHz on the HLP. This is due to bandwidth
limitations of the data link between HLP and Atom computer
and of the relatively high computation cost for predicting a
N x N covariance matrix. While this approximation might
be problematic in theory, it did not cause any problems in
practice since linearization errors in the period of 10 ms are
negligible.

B. Handling Measurement Delays

An efficient method to handle measurement delays is
crucial for robust and accurate state estimation. These delays
usually occur due to computationally expensive processing
tasks such as image processing on limited onboard hardware.
However, the measurement update cannot be performed just
when other processing is finished, instead it has to be aligned
in time with the state prediction. One of the contributions
of this work is a method that compensates for this, ensur-
ing both computational efficiency and theoretical exactness.

5In our setup using the Leica laser tracker, we run the prediction at IMU
frame-rate of 1 kHz and the update at about 7 Hz.

EKF Tasks Processors / Computer

‘ State Prediction % FCU, HL
controller
‘ Covariance Propagation § §
of| 8 g
sl 5| @
‘ Measurement Update gl o 8
-
" 1.6 GHz Atom
‘ Covariance Update Board

Fig. 3: Distribution of the processing tasks with their execution rates. State
prediction, as the most time-critical part for controlling the helicopter, is
executed on the IMU microcontroller (HLP) and is guaranteed to run in
real-time at 1 kHz. This leaves enough time for the more complex parts
to be computed on the Atom computer with a non-real-time operating
system. Also very important for the whole system to work is accurate time
synchronization.

Since both the HLP and Atom computer are synchronized,
the timestamps of all sensors are referring to the same global
time. Keeping a buffer of the S past states enables us to
apply the obtained measurements at the exact time in the
past they were taken. Thus the update is also theoretically
exact, despite the delay. After performing the update step, the
corrected state in the past is propagated again to the present
time. The sequence in Fig. 4 depicts the process.

curr. state meas. curr. state

- a4 - a4 l‘ 00—
pred. state updated state pred. of updated state
a) b))
Fig. 4: Method to handle a time-delayed measurement. a) a given situation
in time, the robot controller uses the latest propagated state as reference.
b) a delayed measurement arrives and corrects the corresponding buffered
state in the past. ¢) from the corrected state on, we correct all states in the
buffer until the most recent one by propagating the corrected state according
to the system’s propagation equations Eq. (4) to Eq. (7).

curr. state meas.

t

Propagating the corrected state to the most recent state is
computationally inexpensive for the state itself, but expensive
for the covariance propagation. However, unless the most
recent state uncertainty is used in other algorithms, there
is no need to propagate the state covariance matrix to the
present time. In fact, it is sufficient to have an up-to-
date state covariance at the point in time where the latest
measurement arrived. To minimize the computational effort
and to avoid computation spikes, we suggest the following:
as a measurement arrives, update the state and covariance at
the time of the measurement in the past and then only re-
compute the state according to Fig. 4 until the present time,
which is not expensive.

During regular state prediction, each time we predict a
new state, we propagate the covariance matrix in the past to
the next state in the past. That is, according to Fig. 5 while a
state prediction e.g. xg is made, the propagation of the state
covariance Pypp is computed.

If the measurements had a constant update rate and delay,
the covariance prediction would be up-to-date at the correct
point in the past where the latest measurement belongs to.
This way, we distribute the covariance prediction optimally
within the time between two measurements and have thus
equally distributed processor load. In practice, the measure-
ment delays vary slightly so we have to ensure an up-to-
date covariance matrix by applying additional covariance

prediction steps or ignoring redundant ones. This overhead
is small in practical applications.

covariance P

state x

- meas t=2

< meas t=5

/ 7 ekf ringbuffer
[prediction [Jupdate [[Jupdated prediction —--- computed at once

Fig. 5: For the computationally efficient state covariance handling we use
two ring-buffers: one for the states and one for the covariance. Each has its
separate data pointer. At a certain time t the state buffer pointer represents
the present time, whereas the covariance buffer pointer points at the time the
measurement corresponds to. Both state and covariance are updated at that
point of time and the state is propagated to its current data pointer (present
time) according to Fig. 4. As further states get propagated, the covariance
is propagated accordingly in the past (t=4 to t=7). Upon new measurement,
covariance and state in the past get updated and again the state is propagated
to its current data pointer.

C. Handling Measurement Updates in Position Control

In the presence of low measurement update rates, notice-
able correction steps occur, which in practice disturbs control
of the MAV resulting in sudden excitations. Therefore, we
still correct the state on the HLP in one step and perform
state propagation from this correction, but we distribute the
correction on the position controller over a constant period
of time. In practice, smoothing the correction over 100 ms
proved to be a good trade-off between precise setpoint
following and smooth motion of the MAV. The results at
a low update rate of 1 Hz can be seen in the right part of
Fig. 9: while the state estimate gets corrected immediately
every second, the motion of the helicopter still stays smooth.
For larger corrections, such as for loop closure events,
correction smoothing would not be sufficient. Therefore, we
suggest performing a correction without smoothing and at
the same time set the setpoint of the controller to the new
corrected position. This avoids sudden movements and the
large correction can be handled by a higher level task.

D. Modular Design

As suggested in Section IV-C, our framework has a core
consisting of the propagation model using the dynamics ac-
quired by the IMU and can be augmented with different types
of measurement updates, i.e. this module remains unchanged
using different sensors for measurement updates. This setup
requires a modular software design capable of adapting to
different and multiple sensors. As this framework, our ROS-
based software implementation consists of a prediction core
and allows different and multiple measurement modules to
be added. Fig. 6 depicts the software architecture. In fact,
to use another sensor to the system, it is only necessary
to define the initialization values of the filter, the linearized
measurement matrix [such that the estimated measurement
z = HZ with & as the state vector and calculate the residual

r = z — 2. This renders our approach versatile and reusable
for a wide range of applications and different sensors.

Measurement
- P —
EKF prediction core class

Sensorl: H1, rl
/ Sensor2: H2, r2
SensorN: HN, rN

Fig. 6: Software architecture of the proposed framework. As described in
Section IV-B, the core part of the framework is the EKF prediction module
which remains unchanged using different measurement sensors. We add
a base class to handle measurements in general including an initialization
routine. A dedicated measurement handler class represents then the different
measurement sensors. Each sensor has its specific update — it is only
necessary to set the initialization values, define the linearized measurement
matrix H and calculate the residual » = z — 2 for each sensor added to the
system.

~<—— communication
e class inheritance

VI. RESULTS

This section presents our experimental evaluation of the
proposed framework and implementation. We give a quan-
titative evaluation using a Vicon motion capturing system
providing us ground truth. We also use the Vicon system
to provide measurements for our experiments to cancel out
potential failures or systematic errors of a pose-estimator
such as (Visual-)SLAM. To obtain measurements of similar
quality as such algorithms, we reduce the rate of the Vicon
measurements and add substantial noise and delay®. With this
approach, we are able to relate the filter performance with
exact values for each disturbance parameter: noise, delay and
frame-rate.

For each test, we change one of these parameters. The
default values are measurements at 10Hz, Vicon standard
noise (mm accuracy) and Vicon standard delay (negligible).
The distance p; from the IMU to the additional sensor is
measured as p{ = [0.015, -0.009, -0.028] and the corre-
sponding attitude ¢; as unit rotation. We conduct two main
experiments: stationary hovering and a dynamic trajectory
flight with all degrees of freedom of the helicopter involved.
For all experiments, the state estimates (position, velocity
and yaw) from the filter are used directly as input for the
PID position controller [11] of the helicopter. A summary of
the results can be seen in the accompanied video’

A. Stationary Hovering

First, we show the performance of the framework under
hovering conditions. This is important to evaluate since the
filter needs motion in order for all the states to be observable
(Section IV). Observability ensures no drift on these states.
For this experiment, we let the vehicle hover at a height of
1m for 30s. We then compute the RMS error between the
filter estimate and ground truth and between ground truth
and the desired setpoint. The latter is done in order to show

5The tools we used can be found at http://www.ros.org/wiki/
vicon_bridge

7A high resolution version is available at http://www.youtube.
com/watch?v=12x53pCkFoI

the performance of the whole system including the position
controller. In particular, we make the following evaluations:

1) Ground truth against filter output for:

a) position p?, and orientation ¢‘, in Roll Pitch Yaw
(rpy) convention

b) scale \ of the position measurement in %

¢) position p; and orientation ¢; in Roll Pitch Yaw
(rpy) convention of the sensor® w.r.t. the IMU.

2) Ground truth against controller setpoint: z = 0, y =
0, z = 1 m, yaw = Orad. In the tables in the appendix,
this is indicated by the second vector in the columns
for p¢, and ¢’,.

All these experiments are performed with a 6DoF pose
sensor (e.g. camera) and a 3DoF position sensor (e.g. Leica
Total Station) in configurations as described in Section IV.
We denote these setups as with (w/) and without (w/o) atti-
tude measurements respectively in the tables in the appendix.

Table 1 shows the results of distorting the signal with
noise. Note that the applied Gaussian noise gets distorted
by the non-linear system becoming sub-optimal for EKF
processes. We apply different noise levels on position and
attitude ranging from a standard deviation of 5 mm and 0.5°,
to 20cm and 2°, respectively. In the same table, it is also
visible that the inter-sensor distance p; is the least accurate
estimate. The observability analysis requires this state to be
non-zero. We assume that the small magnitude of our chosen
p; together with the low excitations in hovering may in
practice not be sufficient for this state to converge fully. The
results of low noise with- and large noise without attitude
update can also be seen in Fig. 7.

Filter Estimate and Vehicle Position 6=0.001) o0
. i
0.05 /\/\ 0.06 || — e fiter i i \
err.posctrl | | / |
PN, ~ Ls / . \ 1’“/\\
< < 0. ' /

‘ measurement

0 5 10 15 20 25 30 0 5 10 15 20 25 30
tfs] ts]

Errors of Filter Estimate and Position Controller (6=0.001)

pos. x [m]
s

o

& o

ground tr. filter ‘

Filter Estimate and Vehicle Position ¢=0.2)

0 5 10 15 20 25 30 0 5 10‘ 15 20 25 30

tls] ts)
Fig. 7: Performance comparison for the “hovering” experiment with (o =
0.001 m) w/ attitude update (top) and (¢ = 0.2m) w/o attitude update
(bottom). Left: ground truth position of the helicopter (red), the filter
estimate (blue) and the measurement the filter was updated with. Right: error
of the filter w.r.t. ground truth (blue) and error of the desired trajectory w.r.t.
ground truth (red) and setpoints. This is the overall error including the state
estimator and the position controller of the helicopter. Note the different
scaling of the plots.

In Table II we see the expected effect of delay introduced
to the measurements. In our implementation, we have a state
buffer of 2.5s. In theory, adding a delay of 500 ms should
thus have minimal influence on the filter performance. This is
evident from the results in Table II. The slight RMS increase
in position p?, and attitude ¢’, comes from the fact that for the

8¢.g. camera or laser scanner. In case of an external tracking system
(Vicon, laser tracker), this is the pose of the reflector(s)

current state, the last measurement update was up to 500 ms
in the past. During this time, the filter state “integrated away”
using the IMU prediction model only. Again, the state p{
seems to be barely observable in this configuration.

In Table IIT we list the influence of the measurement rate
on the filter performance. In theory, as long as we have
information, the filter should converge. Again, the very slight
increase of the RMS in position p’, and attitude g', comes
from the time between measurement updates where the filter
can use the IMU prediction model only.

For all the experiments above, the scale estimate is very
accurate. One may expect differently given that the scale is
a hidden state and thus may compensate on the real system
for linearization and non-Gaussian effects. We assume that
the low excitations in hovering mode reduce these effects
drastically while still giving enough information to actually
observe the state.

B. Dynamic Flight

To show the performance of the filter and the whole system
for dynamic flights, we let the helicopter fly a trajectory of
the shape of a tilted ellipse (Fig. 8), keeping a track speed
of 1m/s while performing a full 360° turn around the z-
axis. We use this trajectory as input for the reference-model
based setpoint following described in [11]. Based on the
given position input, this model generates the accelerations
and velocities (left part of Fig. 8) such that the helicopter is
physically able to stay on the trajectory. The accelerations
are used for feed-forward control whereas an error controller
finally compensates for disturbances, keeping the helicopter
on the desired trajectories for velocity and position.

pos. [m]

vel.[m/s]

ace. [m/s]

tls)

Fig. 8: The trajectory used for the dynamic flight experiments. The top and
right plot show the desired position. Middle and bottom plots show the
velocities and necessary accelerations to keep an absolute track speed of
1 m/s.

Table IV shows the results of different noise levels similar
to the experiment in hovering mode. The values lie in the
same range as for the hovering experiment if not slightly
lower. Since the pose of the filter is a direct measure,
this result is expected. Moreover, the inter-sensor calibration
states seem to have a lower RMS value as well compared to
the hovering experiments. In dynamic flight, the requirements
of having angular velocities and linear accelerations in at
least two axes are fulfilled. As a rule of thumb, it is good to
have as much excitation of the system as the Nyquist theorem
is still fulfilled given the measurement sensor reading rate.
Thus, Table V and Table VI yield the expected results.
Naturally, because of the issue of “integrating away” of the

states on large delays or low update rates, the RMS values of
the position are higher in dynamic flight than while hovering.
The last two tests in Table VI may reflect the above issue
of not fulfilling Nyquist’s theorem. Hence the RMS rises
accordingly. The results of two dynamic flights with 10 Hz
and only 1 Hz update rate can also be seen in Fig. 9.

Filter Estimate and Vehicle Position (update 10 Hz)

1
0 /\ — 03
\ / / 02

a S N
0.1 S

SN \
ound t filte setpoint NIA /. \ ‘/W A
. ‘ ground tr. ilter pl‘ AN Aot ¥ L,"_

(] 5 10 15 20 25 30 0 5 10 15 20 25 30
t[s] tls]

Errors of Filter Estimate and Position Controller (update 10 Hz)
0.4

er. filter
—em.posctil

pos. x [m]
err. x [m]

Filter Estimate and Vehicle Position (update 1 Hz)

1
£ 0 3
g, ~ IS
g

0 5 10 15 20 25 30 0 5 10 15 20 25 30
t[s] tls]

Fig. 9: Performance comparison for the “ellipse” experiment with 10 Hz
(top) and only 1 Hz (bottom) update rate. Left: desired trajectory (green),
ground truth position of the helicopter (red) and the filter estimate (blue).
Right: error of the filter w.r.t. ground truth (blue) and error of the desired
trajectory w.r.t. ground truth (red) and setpoints. This is the overall error
including the state estimator and the position controller of the helicopter.

VII. CONCLUSIONS

Driven by the need for truly autonomous and robust
navigation of MAVs, this paper presents a system for online
inter-sensor calibration and 6DoF pose estimation in an
implementation that runs entirely onboard a MAV (with
an ATOM 1.6 GHz processor). Our results demonstrate the
power and modularity of our framework using different
sensors in addition to an IMU, while an observability analysis
reveals that yaw estimation is possible from 3Dof position
measurements only. The distributed EKF architecture we
propose allows a MAV state prediction at 1 kHz for accurate
control, while time-delays are compensated such that exact
filter updates are ensured in a way that computational load
is optimally distributed across updates. Our thorough quan-
titative evaluation shows that our approach is highly robust
against noise, delay and slow measurement readings.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Simon Lynen for his
help with producing the video and Prof. Daniela Rus and
Prof. Nicholas Roy for hosting Stephan Weiss and Markus
Achtelik in summer 2011 at CSAIL, MIT.

APPENDIX

In the following, detailed results from the experiments are
shown. The values denote the RMS error between the filter
estimate and ground truth, except for the second vector in the
columns for p, and ¢, which denote the RMS error between
setpoint and ground truth. (w/) and (w/0) denote experiments
with and without attitude measurements respectively (see
Section IV-C.1, Section IV-C.2).

A. Hovering

TABLE IV: Measurement Noise @ 10 Hz vs. RMS Error

op[m] i i s s dela ; i s s

o, [rad] Pl [m] gwlradpy)] | AIRI| pilm] | g7 [rad] s i, [m] gilradapy)] | A%] | pSlm] | gf[rad]

0.001 0.006 0.0177([0.0037 [— T 0.052 0.025 —

0:001 || 0003 | | 0019 [|| 02010 | [= || 0.3 || 0032 ||| 0019 s0 || 0007|0080 ||[0:03 || = || o.s00|| 0:043 ||| 0:033

g/o%tg 0.001110.0051110.019110.015 L 0.010 1L 0.000 0.004] [0.007 | [0.050] | 0.045 0.018 | | L 0:000
. 0.0117 [0.028 7|[0.006 - 0.085 0.026 0.007 0.064 0.025 — 0.006 0.021

0.009 |1 0.014 | | 0.032 ||| 0.007 = 0.4 |1 0.024 |11 0.010 100 || 0.009 || 0.092 ||| 0.044 — 0.700 || 0.008 ||| 0.024

g/oaffj 0.003110.006 111 0.0101 1 0.016 J L 0.050 1|L 0.000 0.004 | [0.006 | |[0.014 | [0.034 0.052 | | L 0:000
. 0.014 0.038 0.007 - 0.054 0.031 0.025 0.149 0.030 - 0.016 0.010

0.018 0.008 0.025 0.009 — 0.4 || 0.052 0.018 200 0.027 0.068 0.041 — 1.000 || 0.014 0.039

g/OaztB L 0.006] L 0.008 |{L0.019] [0.022 0.029 0.000 0.006 0.013 0.036 0.038 0.031 0.000
. 0.017 0.056 0.006 - 0.020 0.023 0.095 0.264 0.024 — 0.018 0.011

0.036 {0.012} {0.036 {0.059} { — } 0.4 [0.049 {0.042} 500 ||0:170 || 0:400 ||| 0:063 1.100 | | 0:021 ||| 0046

w/ att. 0.010] L 0.013]|L0.034] L0.033 0.026 0.000 0.030 0.036 0.050 0.066 0.030 0.000

G0 |oe | TaactTragTr 7l o |[0080T 008

Wi 0:026) L 0:033 | |L0:009 | Lo.015)| " [Lo:082 || 0:000 TABLE V: Measurement Delay @ 10 Hz vs. RMS Error
Gt |Tosse 1 TanmIlIamIl — 7)o 100011080
. . . . — . . . update i i s s

who att. L0039 [0:062 |1 0230] [0.229 | L0113]| 0.000 [Hz] P, [m] @, [rad@py)] | A[%] | pilm] | gffrad]
0.200 0.087 0.150 0.045 - 0.035 0.000 = — =
0.036 0.098 0.166 0.016 — 0.8 0.057 0.000 0.009 0.078 0.020 - 0.011 0.019

w/o att. 0.080 0.096 1L 0.190 1 L 0.202] 0.058 0.000 10 0.006 0.064 0.032 — 0.8 0.009 0.011

L 0:005] L0.012] |L0:020] L0.025] L 0.013 | [0.000
TABLE I: Measurement Noise @ 10 Hz vs. RMS Error 0.0077 [0.050 0.023 - 0.007 0.022
5 0.006 0.060 0.040 — 0.8 0.019 0.024
del L0.004] L0.008]|L0.042] L0.047] L 0.024 || L 0.000 |
ela i s 0.016 0.094 0.0127[7 — 1T [0.0307|[0.0137
s P[] @, [rad @py)] | Al%] | pilm] | gf[rad] 2 0.015 || 0'068 ||| 0026 || — || 0.8 || 0014 ||| 0:007
0,005 T 0.029 0021 5001 5032 L 0.005] L0.015]|L0.031] L0.031] L 0.049 | [L 0.000]
E E . - . . [0.0507 [0.1777|[0.026 [—] [0.0147|[0.016]

0 0.011 0.023 0.041 — 0.3 0.010 0.007 1 0.032 0.100 0.040 — 0.8 0.029 0.024
L 0.002] L 0.006] |L0.008] L0.015 0.004 || L0.000 0.009 0.020 0.059 1 L 0.063] 0.123 0.000
0.006 0.035 0.007 - 0.028 0.021

50 0.012 0.026 0.020 — 0.3 0.002 0.071 TABLE VI: Update rate vs. RMS Error
0.004 0.008 0.070 0.065 0.064 0.001
[0.0117[0.0367|[0.0127] —] 0.0377([0.015

100 0.015 0.036 0.052 — 0.3 0.005 0.026 REFERENCES
L 0:005 | [0:009 | |L0:025] | 0.024] 0.069] | 0:000
0.009 0.036 0.016 - 0.031 0.015 H 3 « _fi : i 3 _

200 || o016 || 0036 0.077 - 0.3 || 0070 0.006 [1] S. We}s§ anfi R.'Slegwart, ’l’ileal time m§tnc state estimation for rpod
L 0.004 | [0.006 0.009] L0.016] 0.076 1| L 0.000 ular vision-inertial systems,” in Proceedings of the IEEE International
[0.0177[0.0667([0.0107[—] 0.031 7/ 0.040 . Robotic A ion (ICRA). 2011.

500 || 0.021 || 0080 ||| 0059 || - 0.4 || 0.002 ||| 0040 Conference on Robotics and Automation (ICRA), 2011.

0.005] L 0.012 0.040] | 0.045 | 0.020 0.001 [2] J. Kelly and G. S. Sukhatme, “Visual-inertial sensor fusion: Local-
TABLE I: M Del 10 RMS E ization, mapping and sensor-to-sensor self-calibration,” International

* Measurement Delay @ 10 Hz vs. RMS Error Journal of Robotics Research (IJRR), vol. 30, no. 1, pp. 56-79, 2011.

i [3] F. Mirzaei and S. Roumeliotis, “A Kalman Filter-Based Algorithm
uFH;T pt, [m] q’ [rad (ipy)] A%] | pi[m] | gf[rad] for IMU-Camera Calibration: Observability Analysis and Performance
5001 5026 XIERRS - Son o5t Evaluation,” IEEE Transactions on Robotics and Automation, vol. 24,

20 0012 | | 0.018 ||| 0.065 — 0.3 || 0009 ||| 0025 no. 5, pp. 1143 -1156, 2008. o) o
1 0.001] [0.005]|10.026 | L 0.032] 0.003]| L 0.000 | [4] D. Strelow and S. Singh, “Motion estimation from image and inertial

0.005 0.029 0.012 - 0.041 0.034 » i i

10 [0_011 } [01023} 0.047] [- } 0.3 [0_010 {0_007} measurements,” International Journal of Robotics Research (IJRR),
L 0.001] L 0.006 | |L0.008] [0.014] 0.005]| L0.000 | vol. 23, no. 12, p. 1157, 2004.

5 88(133 88%% 88i§ - 03 8888 884(7) [5] S. Roumeliotis, A. Johnson, and J. Montgomery, “Augmenting inertial
10:002] L0005 1|L0:018] Lo.otel] =~ L0009]]|L 0:0(1)0] navigation with, image-based motion estimation,” in Proceedings
[0.0097[0.0327([0.0137[— T [0.0397|[0.041 7 of the IEEE International Conference on Robotics and Automation

2 014 | | 0:03 0.046 — 0.3 || 0.008 ||| 0:02 (ICRA), 2002

L 0.003 | L 0.008 || L[0.022] L0.021 | L 0.013 0.000 C T .
r0.019170.0457/70.0127 — 1] [0.040 0.029 [6] A. Mourikis, N. Trawny, S. Roumeliotis, A. Johnson, A. Ansar, and
1 0.016 | | 0.039 (|| 0.019 . 0.3 |10.016 0.003 L. Matthies, “Vision-aided inertial navigation for spacecraft entry,
. . . .024 . § . . . ’
0.005 0.009 0.005110.017. 0.0 0.000 descent, and landing,” IEEE Transactions on Robotics (T-RO), vol. 25,
TABLE III: Measurement Update Rate vs. RMS Error no. 2, pp. 264-280, 2009.
[7] E.Jones, “Large scale visual navigation and community map building,”
. : Ph.D. dissertation, University of California at Los Angeles, 2009.
B. D F - . v o gees 200
ynamic llght [8] P. Pinies, T. Lupton, S. Sukkarieh, and J. D. Tardds, “Inertial aiding
op[m] i Al% B STrad of inverse depth SLAM using a monocular camera,” in Proceedings
oq[rad] Pu[0] 9y [rad (py)] (]| pilm] | gilrad] of the IEEE International Conference on Robotics and Automation
001 [[0.003][0.0497][0.0241[— 0.0247] T 0.000 (ICRA), 2007. _ _
.001 .002 | | 0.055 0.027 = 0.4 || 0.016 0.000 [9]1 M. Bryson, M. Johnson-Roberson, and S. Sukkarieh, “Airborne

W(/)%g“ 3 88(1)411 e 88% 88;12 410.0334 88}3 88%3 smoothing and mapping using vision and inertial sensors,” in Proceed-
-009 { 0.011 } { 0.076 { 0.026 } { - } 1.1 [0.015 { 0.019 } ings of the IEEE International Conference on Robotics and Automation

w/aw. |L0.005] [0:015J[L0:015] Lo.028 0.017 J| L 0:000 (ICRA), 2009
.005 [0.0147 [0.082 0.0227 [—] 0.016 0.000 ’ . . «

009 0.009 | | 0,086 0.029 — 0.5 || 0.021 0.000 [10] T. Ford, J. Neumann, P. Fenton, M. Bobye, and J. Hamilton, “Oem4
wéolgn 8822 i 88%8 88?2 110.034 L 88%; 88(133 inertial: A tightly integrated decentralised inertial/gps navigation sys-

018 010 | | 0036 ||| 0024 || — || 1.1 || 0017 ||| 0'006 tem,” NovAtel Inc, Tech. Rep., 2001. ,

w/ att. 0.005 | [0.011 0.015 1 L 0.026 | L 0.025 0.000 [11] M. W. Achtelik, M. C. Achtelik, S. Weiss, and R. Siegwart, “Onboard
.010 0.016 0.071 0.021 - 0.017 0.000 isi i -
018 0012 | 1 0056 |1 0:055 - 0.6 |1 0028 |1l 0:000 IMU and Monocular Vlslon”Based Contfol for MAVs in Unknowp In

w/o att. |L0.007] L0.017 0.049 1 L 0.039 J | 0.067 0.000 and Outdoor Environments,” in Proceedings of the IEEE International
.020 [0.0177 [0.061 0.0157[— 1] [0.031 0.016 Conference on Robotics and Automation (ICRA), 2011.

.036 0.017 0.052 0.028 — 1.2 0.034 0.012 S T

w/att. |L0.012] [0.020]|L0:025] L 0.039] 1 0.025 0.000 [12] N. Trawny and S. I. Roumeliotis, “Indirect Kalman filter for 3D
8%8 [88%2 88% 88%% 17 — 7 o [88i8 8888 attitude estimation,” University of Minnesota, Dept. of Computer

wioatt. |L0.011] L0016 /L0038] Loos7]l " |Loo62 || 0000 Science and Engineering, Tech. Rf:p. 2005-002, 2905.)

.050 r0.0337170.1057/70.0147 — 1] r0.0187/70.016 1 [13] R. Hermann and A. Krener, “Nonlinear controllability and observabil-
.036 0.033 0.088 0.027 — 1.2 0.044 0.014 ity 7 7

wiat. L0056) Loo6 1|1 008] Lo ol 0:026 1|1 0:000 ity,” IEEE Transactions on Automatic Control, vol. 22, no. 5, pp. 728
.050 |[0.0337[0.0987|[0.023 = 0.018 ([0.000 =740, 1977.

.036 0.035 0.108 0.029 — 0.7 0.024 0.000

w/o att. 0.020 0.024 0.060 0.050 0.062 0.000

