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Abstract— In this video, we present our latest results towards
fully autonomous flights with a small helicopter. Using a
monocular camera as the only exteroceptive sensor, we fuse
inertial measurements to achieve a self-calibrating power-on-
and-go system, able to perform autonomous flights in previously
unknown, large, outdoor spaces. Our framework achieves
Simultaneous Localization And Mapping (SLAM) with previ-
ously unseen robustness in onboard aerial navigation for small
platforms with natural restrictions on weight and computational
power. We demonstrate successful operation in flights with
altitude between 0.2-70 m, trajectories with 350 m length, as
well as dynamic maneuvers with track speed of 2 m/s. All flights
shown are performed autonomously using vision in the loop,
with only high-level waypoints given as directions.

I. INTRODUCTION

The research towards autonomous Micro Aerial Vehicles
(MAVs) has been increasingly active over the past few
years, resulting to great progress in the field. We have seen
impressive flights with aggressive maneuvers [1], but these
rely on external tracking systems (e.g. Vicon) limiting their
feasibility to lab-controlled environments. Ego-motion and
scene estimation forms the backbone of any task involving
autonomy of some degree. Given the strict limitations on
weight and power consumption, the choice of sensors, pro-
cessors and algorithms, impose great technical and scientific
challenges. Moreover, while the use of GPS outdoors comes
natural, sole reliance on GPS feeds is highly problematic;
reception cannot be guaranteed (e.g. in narrow streets with
high buildings), and when GPS signal is available, the
coordinates provided can be very inaccurate (especially in
altitude), compromising the accuracy of position estimates.

The good combination of characteristics offered by cam-
eras (e.g. wealth of information captured, low weight), make
them great candidates for MAV sensors in onboard real-
time systems. While successful visual SLAM systems [2],
[3] have been around for some time, their use onboard an
MAV has been very challenging. Approaches like [4] rely
on a laser range finder inside the control loop, while a
camera is only used for loop-closure detection. However,
the additional power and weight requirements of the laser
sensor burdens the power consumption onboard the MAYV,
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Fig. 1: Fusing information from the downward-looking camera and an IMU,
the MAV performs SLAM in a disaster area

limiting the capability for aggressive maneuvers and the
flight duration and, as a consequence, autonomy.

A minimal sensor setup comprising a camera and an
Inertial Measurement Unit (IMU) is very suitable for MAV
navigation, but imposes great research challenges. Fusing
inertial and visual cues can be very beneficial as they
provide complementary information, aiding the robustness
of the estimation processes. However, the complexity of the
system grows vastly with each extra sensor; one has to take
into account synchronization issues, inter-sensor calibration
and intelligent management of all the additional data that
becomes available. In this work, we use the methodologies
developed in [5], [6], [7] to automatically calibrate the on-
board sensors in flight, fuse sensor measurements to perform
local, keyframe-based SLAM (without global optimization)
and finally use this information to control the helicopter.

II. MAV: PLATFORM AND ONBOARD HARDWARE

Our setup consists of a micro helicopter equipped with
an IMU, a monocular down-looking camera and an onboard
computer. The helicopter is a prototype of the “FireFly”
hexacopter from Ascending Technologies (Fig. 1). Compared
to the “AscTec Pelican” it has an improved vibration damp-
ing for the sensors (camera, Flight Control Unit (FCU))
and can tolerate failure of one rotor. On the high level
microcontroller of the FCU, we implemented a position
controller based on nonlinear dynamic inversion, reference-
model-based waypoint-following [7] and the state prediction
of the Extended Kalman Filter (EKF) [5] — all executed at
1 kHz. The platform features a “MasterMind” embedded
1.86 GHz Core2Duo onboard computer from Ascending
Technologies, and a MatrixVision “Bluefox” wide VGA
camera. Our implementation is exclusively based on ROS
middleware and has been made publicly available' for the
position controller and helicopter interface, the camera inter-
face, our visual odometry and the data fusion EKF module.

Uhttp://www.asl.ethz.ch/research/software



III. ONBOARD VISUAL-INERTIAL SLAM

State Estimation / Data Fusion: Visual measurements are
fused with IMU readings (linear acceleration and angular
velocity) in an EKF framework. The findings of [8], [9], [10]
are applied to not only estimate the pose and velocity of the
MAY, but also the sensor biases, the scale of the position esti-
mates and the (inter-sensor) calibration between the IMU and
the camera in real-time, rendering the system truly power-
on-and-go. Since IMU readings are available at 1 kHz at the
high-level processor (HLP) of the FCU, we compute the less
expensive EKF state prediction on the HLP at the same rate.
The covariance propagation and update, as well as the EKF
measurement update stage run on the Core2Duo computer
due to their complexity. This approach lets us handle the fast
dynamics of the helicopter, while allowing the computation
of an ideal Kalman gain based on the uncertainties of the
state and the measurements (instead of using a fixed Kalman
gain). Measurement delays are compensated for by keeping
a buffer with states and associated covariances and applying
the measurements according to their time-stamp. In [5] we
showed that this approach is able to handle measurement
delays up to 500 ms, noise with standard deviation up to
20 cm and slow update rates (as low as 1 Hz), while dynamic
maneuvers are still possible.

Visual Localization: As one of the most modern, high-
performing systems, we choose to tailor PTAM [3] to the
general needs of a computationally limited MAV platform
[6]. PTAM is a keyframe-based SLAM system, i.e. the map
is defined as a set of keyframes together with their observed
features. In order to keep computational complexity constant,
we only keep the closest keyframes (by euclidean distance) in
the map. During outdoor experiments, we experienced severe
issues of self-similarity in the environment such as asphalt
in urban areas and grass in rural areas, especially affecting
the finest scale image features. Therefore, the finest-scale
features are used only for tracking without adding them to
the SLAM map. Moreover, an inverted index system on the
keyframes structure reduces complexity of feature projection
to linear with the number of visible keyframes rather than
linear with the number of features in the map.

IV. EXPERIMENTAL RESULTS

The experiments shown in the video, take place in an
outdoor disaster-training area and are performed without any
prior knowledge of the scene (i.e. no pre-computed map or
artificial landmarks), while all computation runs onboard the
MAV. For all experiments, the MAV take-off is manual up to
~ 4 m altitude. After initializing PTAM and a first estimation
of the visual scale aided by GPS measurements (= 10 s only),
the autonomous vision-based position controller is enabled.

The first experiment shows exploration of the area by
repetitive flights in a 60 x 15 m rectangle with a track speed
of 2m/s. Even though SLAM runs by maintaining only the
20 closest keyframes in PTAM, the position error upon com-
pletion of the 2nd round was only 1.47 m or 0.4 %. Finally,
after 357 m of traveled path, the flight ended due to an
empty battery. Further experiments demonstrate robustness

to wind gusts simulated by pulling the MAV with a cord,
resilience to challenging light conditions causing saturated
brightness in images, and a dynamic trajectory flight in an
inclined ellipse of 10 x 5m at 2m/s. Robustness to scale-
changes is demonstrated by successful tracking during ascent
to an altitude of 70 m and descent. Interestingly, landing is
also demonstrated to be performed with autonomous vision-
based control, following velocity commands from a joystick.
As the MAV approaches the wooden pallet (serving as a
landing platform), vision fails at a distance of ~ 20 cm and
landing completes purely based on integration of the IMU
readings. We believe that this huge change of scale cannot
be handled by a stereo vision setup and thus highlights the
strength of our monocular approach, which is independent of
scene depth. As the controller of the MAV still needs metric
pose estimates, we show how to estimate scale in [8], [5].

V. CONCLUSION

This video demonstrates our visual-inertial methodology
for SLAM onboard a MAYV, enabling autonomous flights
in unknown outdoor environments. The robustness of the
system is successfully tested against disturbances, challeng-
ing light conditions, large scale-changes and high MAV
dynamics enabling local vision-based stability of the MAV.
Our system provides a basis for further research on high-level
algorithms such as relocalization and obstacle avoidance for
autonomous exploration, increasing the overall autonomy.
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