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Abstract

In this paper we apply boosting to learn complex non-linear local visual feature
representations, drawing inspiration from its successful application to visual ob-
ject detection. The main goal of local feature descriptors is to distinctively repre-
sent a salient image region while remaining invariant to viewpoint and illumina-
tion changes. This representation can be improved using machine learning, how-
ever, past approaches have been mostly limited to learning linear feature mappings
in either the original input or a kernelized input feature space. While kernelized
methods have proven somewhat effective for learning non-linear local feature de-
scriptors, they rely heavily on the choice of an appropriate kernel function whose
selection is often difficult and non-intuitive. We propose to use the boosting-trick
to obtain a non-linear mapping of the input to a high-dimensional feature space.
The non-linear feature mapping obtained with the boosting-trick is highly intu-
itive. We employ gradient-based weak learners resulting in a learned descriptor
that closely resembles the well-known SIFT. As demonstrated in our experiments,
the resulting descriptor can be learned directly from intensity patches achieving
state-of-the-art performance.

1 Introduction
Representing salient image regions in a way that is invariant to unwanted image transformations is
a crucial Computer Vision task. Well-known local feature descriptors, such as the Scale Invariant
Feature Transform (SIFT) [1] or Speeded Up Robust Features (SURF) [2], address this problem
by using a set of hand-crafted filters and non-linear operations. These descriptors have become
prevalent, even though they are not truly invariant with respect to various viewpoint and illumination
changes which limits their applicability.

In an effort to address these limitations, a fair amount of work has focused on learning local feature
descriptors [3, 4, 5] that leverage labeled training image patches to learn invariant feature representa-
tions based on local image statistics. Although significant progress has been made, these approaches
are either built on top of hand-crafted representations [5] or still require significant parameter tuning
as in [4] which relies on a non-analytical objective that is difficult to optimize.

Learning an invariant feature representation is strongly related to learning an appropriate similarity
measure or metric over intensity patches that is invariant to unwanted image transformations, and
work on descriptor learning has been predominantly focused in this area [3, 6, 5]. Methods for met-
ric learning that have been applied to image data have largely focused on learning a linear feature
mapping in either the original input or a kernelized input feature space [7, 8]. This includes previous
boosting-based metric learning methods that thus far have been limited to learning linear feature
transformations [3, 7, 9]. In this way, non-linearities are modeled using a predefined similarity or
kernel function that implicitly maps the input features to a high-dimensional feature space where the
transformation is assumed to be linear. While these methods have proven somewhat effective for
learning non-linear local feature mappings, choosing an appropriate kernel function is often non-
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intuitive and remains a challenging and largely open problem. Additionally, kernel methods involve
an optimization whose problem complexity grows quadratically with the number of training exam-
ples making them difficult to apply to large problems that are typical to local descriptor learning.

In this paper, we apply boosting to learn complex non-linear local visual feature representations
drawing inspiration from its successful application to visual object detection [10]. Image patch
appearance is modeled using local non-linear filters evaluated within the image patch that are effec-
tively selected with boosting. Analogous to the kernel-trick, our approach can be seen as applying a
boosting-trick [11] to obtain a non-linear mapping of the input to a high-dimensional feature space.
Unlike kernel methods, the boosting-trick allows for the definition of intuitive non-linear feature
mappings. Also, our learning approach scales linearly with the number of training examples making
it more easily amenable to large scale problems and results in highly accurate descriptor matching.

We build upon [3] that also relies on boosting to compute a descriptor, and show how we can use it
as a way to efficiently select features, from which we compute a compact representation. We also
replace the simple weak learners of [3] by non-linear filters more adapted to the problem. In par-
ticular, we employ image gradient-based weak learners similar to [12] that share a close connection
with the non-linear filters used in proven image descriptors such as SIFT and Histogram-of-Oriented
Gradients (HOG) [13]. Our approach can be seen as a generalization of these methods cast within
a principled learning framework. As seen in our experiments, our descriptor can be learned di-
rectly from intensity patches and results in state-of-the-art performance rivaling its hand-designed
equivalents.

To evaluate our approach we consider the image patch dataset of [4] containing several hundreds
of thousands of image patches under varying viewpoint and illumination conditions. As baselines
we compare against leading contemporary hand-designed and learned local feature descriptors [1,
2, 3, 5]. We demonstrate the effectiveness of our approach on this challenging dataset, significantly
outperforming the baseline methods.

2 Related work
Machine learning has been applied to improve both matching efficiency and accuracy of image
descriptors [3, 4, 5, 8, 14, 15]. Feature hashing methods improve the storage and computational
requirements of image-based features [16, 14, 15]. Salakhutdinov and Hinton [16, 17] develop
a semantic hashing approach based on Restricted Boltzman Machines (RBMs) applied to binary
images of digits. Similarly, Weiss et al. [14] present a spectral hashing approach that learns compact
binary codes for efficient image indexing and matching. Kulis and Darrell [15] extend this idea
to explicitly minimize the error between the original Euclidean and computed Hamming distances.
Many of these approaches presume a given distance or similarity measure over a pre-defined input
feature space. Although they result in efficient description and indexing in many cases they are
limited to the matching accuracy of the original input space. In contrast, our approach learns a non-
linear feature mapping that is specifically optimized to result in highly accurate descriptor matching.

Methods to metric learning learn feature spaces tailored to a particular matching task [5, 8]. These
methods assume the presence of annotated label pairs or triplets that encode the desired proximity
relationships of the learned feature embedding. Jain et al. [8] learn a Mahalanobis distance metric
defined using either the original input or a kernelized input feature space applied to image classifi-
cation and matching. Alternatively, Strecha et al. [5] employ Linear Discriminant Analysis to learn
a linear feature mapping from binary-labeled example pairs. Both of these methods are closely re-
lated, offering different optimization strategies for learning a Mahalanobis-based distance metric.
While these methods improve matching accuracy through a learned feature space, they require the
presence of a pre-selected kernel function to encode non-linearities. Such approaches are well suited
for certain image indexing and classification tasks where task-specific kernel functions have been
proposed (e.g., [18]). However, they are less applicable to local image feature matching, for which
the appropriate choice of kernel function is less understood.

Boosting has also been applied for learning Mahalanobis-based distance metrics involving high-
dimensional input spaces overcoming the large computational complexity of conventional positive
semi-definite (PSD) solvers based on the interior point method [7, 9]. Shen et al. [19] proposed
a PSD solver using column generation techniques based on AdaBoost, that was later extended to
involve closed-form iterative updates [7]. More recently, Bi et al. [9] devised a similar method
exhibiting even further improvements in computational complexity with application to bio-medical
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imagery. While these methods also use boosting to learn a feature mapping, they have emphasized
computational efficiency only considering linear feature embeddings. Our approach exhibits similar
computational advantages, however, has the ability to learn non-linear feature mappings beyond
what these methods have proposed.

Similar to our work, Brown et al. [4] also consider different feature pooling and selection strategies
of gradient-based features resulting in a descriptor which is both short and discriminant. In [4],
however, they optimize on the combination of handcrafted blocks, and their parameters. The crite-
rion they consider—the area below the ROC curve—is not analytical and thus difficult to optimize,
and does not generalize well. In contrast, we provide a generic learning framework for finding such
representations. Moreover, the form of our descriptor is much simpler. Simultaneous to this work,
similar ideas were explored in [20, 21]. While these approaches assume a sub-sampled or course
set of pooling regions to mitigate tractability, we allow for the discovery of more generic pooling
configurations with boosting.

Our work on boosted feature learning can be traced back to the work of Dollár et al. [22] where they
apply boosting across a range of different features for pedestrian detection. Our approach is probably
most similar to the boosted Similarity Sensitive Coding (SSC) method of Shakhnarovich [3] that
learns a boosted similarity function from a family of weak learners, a method that was later extended
in [23] to be used with a Hamming distance. In [3], only linear projection based weak-learners were
considered. Also, Boosted SSC can often yield fairly high-dimensional embeddings. Our approach
can be seen as an extension of Boosted SSC to form low-dimensional feature mappings. We also
show that the image gradient-based weak learners of [24] are well adapted to the problem. As seen
in our experiments, our approach significantly outperforms Boosted SSC when applied to image
intensity patches.

3 Method
Given an image intensity patch x ∈ RD we look for a descriptor of x as a non-linear mapping
H(x) into the space spanned by {hi}Mi=1, a collection of thresholded non-linear response functions
hi(x) : RD → {−1, 1}. The number of response functions M is generally large and possibly
infinite.

This mapping can be learned by minimizing the exponential loss with respect to a desired similarity
function f(x,y) defined over image patch pairs

L =

N∑
i=1

exp(−lif(xi,yi)) (1)

where xi,yi ∈ RD are training intensity patches and li ∈ {−1, 1} is a label indicating whether it is
a similar (+1) or dissimilar (−1) pair.

The Boosted SSC method proposed in [3] considers a similarity function defined by a simply
weighted sum of thresholded response functions

f(x,y) =

M∑
i=1

αihi(x)hi(y) . (2)

This defines a weighted hash function with the importance of each dimension i given by αi.

Substituting this expression into Equation (1) gives

LSSC =

N∑
i=1

exp

−li M∑
j=1

αjhj(xi)hj(yi)

 . (3)

In practice M is large and in general the number of possible hi’s can be infinite making the explicit
optimization of LSSC difficult, which constitutes a problem for which boosting is particularly well
suited [25]. Although boosting is a greedy optimization scheme, it is a provably effective method
for constructing a highly accurate predictor from a collection of weak predictors hi.

Similar to the kernel trick, the resulting boosting-trick also maps each observation to a high-
dimensional feature space, however, it computes an explicit mapping for which the αi’s that define
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f(x,y) are assumed to be sparse [11]. In fact, Rosset et al. [26] have shown that under certain
settings boosting can be interpreted as imposing an L1 sparsity constraint over the response func-
tion weights αi. As will be seen below, unlike the kernel trick, this allows for the definition of
high-dimensional embeddings well suited to the descriptor matching task whose features have an
intuitive explanation.

Boosted SSC employs linear response weak predictors based on a linear projection of the input. In
contrast, we consider non-linear response functions more suitable for the descriptor matching task
as discussed in Section 3.3. In addition, the greedy optimization can often yield embeddings that
although accurate are fairly redundant and inefficient.

In what follows, we will present our approach for learning compact boosted feature descriptors
called Low-Dimensional Boosted Gradient Maps (L-BGM). First, we present a modified similarity
function well suited for learning low-dimensional, discriminative embeddings with boosting. Next,
we show how we can factorize the learned embedding to form a compact feature descriptor. Finally,
the gradient-based weak learners utilized by our approach are detailed.

3.1 Similarity measure
To mitigate the potentially redundant embeddings found by boosting we propose an alternative sim-
ilarity function that models the correlation between weak response functions,

fLBGM (x,y) =
∑
i,j

αi,jhi(x)hj(y) = h(x)TAh(y), (4)

where h(x) = [h1(x), · · · , hM (x)] and A is an M ×M matrix of coefficients αi,j . This similarity
measure is a generalization of Equation (2). In particular, fLBGM is equivalent to the Boosted SSC
similarity measure in the restricted case of a diagonal A.

Substituting the above expression into Equation (1) gives

LLBGM =

N∑
k=1

exp

−lk∑
i,j

αi,jhi(xk)hj(yk)

 . (5)

Although it can be shown that LLBGM can be jointly optimized for A and the hi’s using boosting,
this involves a fairly complex procedure. Instead, we propose a two step learning strategy whereby
we first apply AdaBoost to find the hi’s as in [3]. As shown by our experiments, this provides an
effective way to select relevant hi’s. We then apply stochastic gradient descent to find an optimal
weighting over the selected features that minimizes LLBGM .

More formally, let P be the number of relevant response functions found with AdaBoost with P �
M . We define AP ∈ RP×P to be the sub-matrix corresponding to the non-zero entries of A,
explicitly optimized by our approach. Note that as the loss function is convex in A, AP can be
found optimally with respect to the selected hi’s. In addition, we constrain αi,j = αj,i during
optimization restricting the solution to the set of symmetric P × P matrices yielding a symmetric
similarity measure fLBGM . We also experimented with more restrictive forms of regularization,
e.g., constraining AP to be possitive semi-definite, however, this is more costly and gave similar
results.

We use a simple implementation of stochastic gradient descent with a constant valued step size,
initialized using the diagonal matrix found by Boosted SSC, and iterate until convergence or a max-
imum number of iterations is reached. Note that because the weak learners are binary, we can
precompute the exponential terms involved in the derivatives for all the data samples, as they are
constant with respect to AP . This significantly speeds up the optimization process.

3.2 Embedding factorization
The similarity function of Equation (4) defines an implicit feature mapping over example pairs. We
now show how the AP matrix in fLBGM can be factorized to result in compact feature descriptors
computed independently over each input.

Assuming AP to be a symmetric P × P matrix it can be factorized into the following form,

AP = BWBT =

d∑
k=1

wkbkb
T
k (6)
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Figure 1: A specialized configuration of weak response functions φ corresponding to a regular
gridding within the image patch. In addition, assuming a Gaussian weighting of the α’s results in a
descriptor that closely resembles SIFT [1] and is one of the many solutions afforded by our learning
framework.

where W = diag([w1, · · · , wd]), wk ∈ {−1, 1}, B = [b1, · · · ,bd], b ∈ RP , and d ≤ P .

Equation (4) can then be re-expressed as

fLBGM (x,y) =

d∑
k=1

wk

(
P∑
i=1

bk,ihi(x)

) P∑
j=1

bk,jhj(y)

 . (7)

This factorization defines a signed inner product between the embedded feature vectors and provides
increased efficiency with respect to the original similarity measure 1. For d < P (i.e., the effective
rank of AP is d < P ) the factorization represents a smoothed version of AP discarding the low-
energy dimensions that typically correlate with noise, leading to further performance improvements.

The final embedding found with our approach is therefore

HLBGM (x) = BTh(x) , (8)

and HLBGM (x) : RD → Rd.

The projection matrix B defines a discriminative dimensionality reduction optimized with respect to
the exponential loss objective of Equation (5). As seen in our experiments, in the case of redundant
hi this results in a considerable feature compression, also offering a more compact description than
the original input patch.

3.3 Weak learners
The boosting-trick allows for a variety of non-linear embeddings parameterized by the chosen weak
learner family. We employ the gradient-based response functions of [12] to form our feature descrip-
tor. In [12], the usefulness of these features was demonstrated for visual object detection. In what
follows, we extend these features to the descriptor matching task illustrating their close connection
with the well-known SIFT descriptor.

Following the notation of [12], our weak learners are defined as

h(x;R, e, T ) =

{
1 if φR,e(x) ≤ T
−1 otherwise

, (9)

where
φR,e(x) =

∑
m∈R

ξe(x,m) /
∑

ek∈Φ,m∈R
ξek(x,m) , (10)

with region ξe(x,m) being the gradient energy along an orientation e at location m within x, and
R defining a rectangular extent within the patch. The gradient energy is computed based on the dot
product between e and the gradient orientation at pixel m [12]. The orientation e ranges between
[−π, π] and is quantized to take values Φ = {0, 2π

q ,
4π
q , · · · , (q − 1) ∗ 2π

q } with q the number of

1Matching two sets of descriptors each of size N is O(N2P 2) under the original measure and O(NPd+
N2d) provided the factorization, resulting in significant savings for reasonably sized N and P , and d� P .
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Figure 2: Learned spatial weighting obtained with Boosted Gradient Maps (BGM) trained on (a)
Liberty, (b) Notre Dame and (c) Yosemite datasets. The learned weighting closely resembles the
Gaussian weighting employed by SIFT (white circles indicate σ/2 and σ used by SIFT).

quantization bins. As noted in [12] this representation can be computed efficiently using integral
images.

The non-linear gradient response functions φR,e along with their thresholding T define the param-
eterization of the weak learner family optimized with our approach. Consider the specialized con-
figuration illustrated in Figure 1. This corresponds to a selection of weak learners whose R and e
values are parameterized such that they lie along a regular grid, equally sampling each edge ori-
entation within each grid cell. In addition, if we assume a Gaussian weighting centered about the
patch, the resulting descriptor closely resembles SIFT2 [1]. In fact, this configuration and weighting
corresponds to one of the many solutions afforded by our approach. In [4], they note the importance
of allowing for alternative pooling and feature selection strategies, both of which are effectively op-
timized within our framework. As seen in our experiments, this results in a significant performance
gain over hand-designed SIFT.

4 Results
In this section, we first present an overview of our evaluation framework. We then show the results
obtained using Boosted SSC combined with gradient-based weak learners described in Sec. 3.3.
We continue with the results generated when applying the factorized embedding of the matrix A.
Finally, we present a comparison of our final descriptor with the state of the art.

4.1 Evaluation framework
We evaluate the performance of our methods using three publicly available datasets: Liberty, Notre
Dame and Yosemite [4]. Each of them contain over 400k scale- and rotation-normalized 64 × 64
patches. These patches are sampled around interest points detected using Difference of Gaus-
sians and the correspondences between patches are found using a multi-view stereo algorithm. The
datasets created this way exhibit substantial perspective distortion and various lighting conditions.
The ground truth available for each of these datasets describes 100k, 200k and 500k pairs of patches,
where 50% correspond to match pairs, and 50% to non-match pairs. In our evaluation, we separately
consider each dataset for training and use the held-out datasets for testing. We report the results of
the evaluation in terms of ROC curves and 95% error rate as is done in [4].

4.2 Boosted Gradient Maps
To show the performance boost we get by using gradient-based weak learners in our boosting
scheme, we plot the results for the original Boosted SSC method [3], which relies on thresholded
pixel intensities as weak learners, and for the same method which uses gradient-based weak learners
instead (referred to as Boosted Gradient Maps (BGM)) with q = 24 quantized orientation bins used
throughout our experiments. As we can see in Fig. 3(a), a 128-dimensional Boosted SSC descriptor
can be easily outperformed by a 32-dimensional BGM descriptor. When comparing descriptors with
the same dimensionality, the improvement measured in terms of 95% error rate reaches over 50%.
Furthermore, it is worth noticing, that with 128 dimensions BGM performs similarly to SIFT, and
when we increase the dimensionality to 512 - it outperforms SIFT by 14% in terms of 95% error
rate. When comparing the 256-dimensional SIFT (obtained by increasing the granularity of the ori-
entation bins) with the 256-dimensional BGM, the extended SIFT descriptor performs much worse

2SIFT additionally normalizes each descriptor to be unit norm, however, the underlying representation is
otherwise quite similar.
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Figure 3: (a) Boosted SCC using thresholded pixel intensities in comparison with our Boosted
Gradient Maps (BGM) approach. (b) Results after optimization of the correlation matrix A. Per-
formance is evaluated with respect to factorization dimensionality d. In parentheses: the number of
dimensions and the 95% error rate.

(34.22% error rate vs 15.99% for BGM-256). This indicates that boosting with a similar number of
non-linear classifiers adds to the performance, and proves how well tuned the SIFT descriptor is.

Visualizations of the learned weighting obtained with BGM trained on Liberty, Notre Dame and
Yosemite datasets are displayed in Figure 2. To plot the visualizations we sum the α’s across
orientations within the rectangular regions of the corresponding weak learners. Note that although
there are some differences, interestingly this weighting closely resembles the Gaussian weighting
employed by SIFT.

4.3 Low-Dimensional Boosted Gradient Maps

To further improve performance, we optimize over the correlation matrix of the weak learners’ re-
sponses, as explained in Sec. 3.1, and apply the embedding from Sec. 3.2. The results of this method
are shown in Fig. 3(b). In these experiments, we learn our L-BGM descriptor using the responses of
512 gradient-based weak learners selected with boosting. We first optimize over the weak learners’
correlation matrix which is constrained to be diagonal. This corresponds to a global optimization
of the weights of the weak learners. The resulting 32-dimensional L-BGM-Diag descriptor per-
forms only slightly better than the corresponding 32-dimensional BGM. Interestingly, the additional
degrees of freedom obtained by optimizing over the full correlation matrix boost the results sig-
nificantly and allow us to outperform SIFT with as few as 32 dimensions. When we compare our
128-dimensional descriptor, i.e., the descriptor of the same length as SIFT, we observe 15% im-
provement in terms of 95% error rate. However, when we increase the descriptor length from 256 to
512 we can see a slight performance drop since we begin to include the “noisy” dimensions of our
embedding which correspond to the eigenvalues of low magnitude, a trend typical to many dimen-
sionality reduction techniques. Hence, as our final descriptor, we select the 64-dimensional L-BGM
descriptor, as it provides a decent trade-off between performance and descriptor length.

Figure 3(b) also shows the results obtained by applying PCA on the responses of 512 gradient-based
weak learners (BGM-PCA). The descriptor generated this way performs similarly to SIFT, however
our method still provides better results even for the same dimensionality, which shows the advantage
in optimizing the exponential loss of Eq. 5.

4.4 Comparison with the state of the art

Here we compare our approach against the following baselines: sum of squared differences of pixel
intensities (SSD), the state-of-the-art SIFT descriptor [1], SURF descriptor [2], binary LDAHash
descriptor [5], a real-valued descriptor computed by applying LDE projections on bias-gain normal-
ized patches (LDA-int) [4] and the original Boosted SSC [3]. We have also tested recent binary
descriptors such as BRIEF [27], ORB [28] or BRISK [29], however, they performed much worse
than the baselines presented in the paper. For SIFT, we use the publicly available implementation of
A. Vedaldi [30]. For SURF and LDAHash, we use the implementation available from the websites
of the authors. For the other methods, we use our own implementation. For LDA-int we choose
the dimensionality which was reported to perform the best on a given dataset according to [4]. For
Boosted SSC, we use 128-dimensions as this obtained the best performance.
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Figure 4: Comparison to state of the art. In parentheses: the number of dimensions, and the 95%
error rate. Our L-BGM approach outperforms SIFT by up to 18% in terms of 95% error rate using
half fewer dimensions.

In Fig. 4 we plot the recognition curves for all the baselines and our method. BGM and L-BGM
outperform the baseline methods across all FP rates. The maximal performance boost is obtained
by using our 64-dimensional L-BGM descriptor that results in an up to 18% improvement in terms
of 95% error rate with respect to the state-of-the-art SIFT descriptor. Descriptors derived from
patch intensities, i.e. SSD, Boosted SSC and LDA-int, perform much worse than the gradient-based
ones. Finally, our BGM and L-BGM descriptors far outperform SIFT which relies on hand-crafted
filters applied to gradient maps. Moreover, with BGM and L-BGM we are able to reduce the 95%
error rate by over 3 times with respect to the other state-of-the-art descriptors, namely SURF and
LDAHash. We have computed the results for all the configurations of training and testing datasets
without observing any significant differences, thus we show here only a representative set of the
curves. More results can be found in the supplementary material.

Interestingly, the results we obtain are comparable with “the best of the best” results reported in [4].
However, since the code for their compact descriptors is not publicly available, we can only com-
pare the performance in terms of the 95% error rates. Only the composite descriptors of [4] provide
some advantage over our compact L-BGM, as their average 95% error rate is 2% lower than this of
L-BGM. Nevertheless, we outperform their non-parametric descriptors by 12% and perform slightly
better than the parametric ones, while using descriptors of an order of magnitude shorter. This com-
parison indicates that even though our approach does not require any complex pipeline optimization
and parameter tuning, we perform similarly to the finely optimized descriptors presented in [4].

5 Conclusions
In this paper we presented a new method for learning image descriptors by using Low-Dimensional
Boosted Gradient Maps (L-BGM). L-BGM offers an attractive alternative to traditional descriptor
learning techniques that model non-linearities based on the kernel-trick, relying on a pre-specified
kernel function whose selection can be difficult and unintuitive. In contrast, we have shown that
for the descriptor matching problem the boosting-trick leads to non-linear feature mappings whose
features have an intuitive explanation. We demonstrated the use of gradient-based weak learner
functions for learning descriptors within our framework, illustrating their close connection with the
well-known SIFT descriptor. A discriminative embedding technique was also presented, yielding
fairly compact and discriminative feature descriptions compared to the baseline methods. We eval-
uated our approach on benchmark datasets where L-BGM was shown to outperform leading con-
temporary hand-designed and learned feature descriptors. Unlike previous approaches, our L-BGM
descriptor can be learned directly from raw intensity patches achieving state-of-the-art performance.
Interesting avenues of future work include the exploration of other weak learner families for de-
scriptor learning, e.g., SURF-like Haar features, and extensions to binary feature embeddings.
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