
Integration of online learning into HTN planning for robotic tasks

Stéphane Magnenat
Autonomous Systems Lab - ETH Zürich

stephane at magnenat dot net

Jean-Cédric Chappelier
LIA - EPFL

jean-cedric.chappelier@epfl.ch

Francesco Mondada
LSRO - EPFL

francesco.mondada@epfl.ch

Abstract

This paper extends HTN planning with lightweight learning,
considering that in robotics, actions have a non-zero probabil-
ity of failing. Our work applies to A*-based HTN planners
with lifting. We prove that the planner finds the plan of maxi-
mal expected utility, while retaining its lifting capability and
efficient heuristic-based search. We show how to learn the
probabilities online, which allows a robot to adapt by replan-
ning on execution failures. The idea behind this work is to
use the HTN domain to constrain the space of possibilities,
and then to learn on the constrained space in a way requir-
ing few training samples, rendering the method applicable to
autonomous mobile robots.

Introduction
The hierarchical task network (HTN) planning method (Ghal-
lab, Nau, and Traverso 2004, ch. 11) has proved to be a
powerful block for building high-level robot behaviours in
various contexts, such as navigation (Belker, Hammel, and
Hertzberg 2003), activity planning (Beaudry, Kabanza, and
Michaud 2005), human-robot interaction (Alami et al. 2006),
or autonomous construction (Magnenat 2010). This planning
method allows to express knowledge and to reason about the
possible actions of the robot and their consequences on the
world. Planners store knowledge in the form of task networks,
that are recursive trees of alternative task decompositions,
including preconditions and action effects. The set of all
task networks that a planner uses is called the planning do-
main. Task networks are expressive, but they must provide
a complete and totally correct world knowledge. Yet this
is hardly possible in robotics reality, where there might be
several ways to perform an action, some better than others
given the specificity of the particular environment in which
the robot evolves. In robotics applications, HTN planning
thus needs adaptation/learning.

Let us illustrate with an example the limitations of basic
HTN planning in the real world. Imagine a robot that must
fetch objects from a cupboard and put them on the ground
as fast as possible. There are two ways to do so: gently
putting the object down or dropping it. Dropping is faster,
and therefore is preferred. But while some objects, such

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as balls, can be dropped, others, such as glasses, must be
handled with care: if dropped they will probably break and
the plan execution will fail. In this paper, we propose a way
to learn from the results of action executions in order to give
a moderate adaptability to the planning process. In the former
example, our method will make the planner gently put down
glasses after a few failed drops. If the glasses are in fact in
plastic and can be dropped safely, the same planning domain
will let the robot to prefer this faster way. The behavioural
difference purely results from the experimental interaction
with the environment.

The contribution of this paper is thus the integration of
a lightweight form of learning into HTN planning, suitable
for real-time use by mobile robots. This learning operates in
the relatively small space of possible actions and therefore
does not require a large experimental corpus. This is possible
because the HTN planning domain already heavily constrains
the space of possible action sequences. Note that action
success rate might depend on the context (the previously
executed actions), but this contextual relationship is known
a priori and can be encoded by hand. The main difference
with most of the works integrating learning into planning is
that these employ Markov decision process (MDP) and put
probabilities on states. In naive MDP formulations, the size
of the state space is proportional to the Herbrand base of
the planning problem, which grows exponentially with the
number of objects considered (Schulz 2002). As discussed
in the next section, this size remains significant despite the
various ways to reduce it recently proposed in the literature
(see for instance Meneguzzi et al. 2011). On the contrary,
the method we propose in this paper maintains probabilities
on actions, not on states. Therefore, it can take advantage of
high-level information on the action success rate, using only
a small number of trials. This allows the developer of the
planning domain to write all possible ways to perform a task
and to let the robot explore at run time which actions are the
most suited for its particular environment.

Related work
Our work is not the first attempt at integrating learning into
HTN planning. In this section, we briefly review related work
and discuss how it compares to ours.

Li, Kambhampati, and Yoon (2009) define a HTN scheme
in which probabilities are associated with task decomposi-

tions. In contrast, we are more interested in adding prob-
ability of success to basic actions, because for robotic ap-
plications this is the point where the plan might fail. Note
that the work of Li et al. focuses on learning the planning
domain from plan traces, while we concentrate on improving
the adaptability of hand-crafted domains.

In the field of autonomous mental development (AMD), the
work of Mugan and Kuipers (2011) aims at learning high-
level states and actions in continuous environments. While
this developmental system has many layers, at the planning
level it associates success rates to actions, and chooses the
plan with the best chance of success considering these rates.
Therefore, albeit formulated in a different context and miss-
ing a formal proof of optimality, this work is the closest to
ours at the level of the high-level hypotheses.

Morisset and Ghallab (2008) present a robot that learns
from experience in a similar way to our method. However,
these authors maintain separate control states that are linked
to the HTN skills hierarchy through a MDP, that is the object
of learning. In contrast, our method attaches probabilities of
success to contextualized actions and considers these to be
independent.

Meneguzzi et al. (2011) propose to construct a MDP from a
hand-crafted HTN, and then to solve the MDP. Similarly to our
work, this allows to consider error rates in action executions.
However, in that work the MDP operates in a grounded space,
while our approach allows the planner to work in the lifted
space (Russell et al., Sect. 9.2, p. 275), reducing dimension-
ality by considering classes of objects rather than instances.
In the experiment presented in Meneguzzi et al., the number
of MDP states seems to be proportional to the logarithm of the
Herbrand base of the planning problem. However, the MDP
still holds about 85 states for a Herbrand base of 100, which
corresponds to a very small domain. Furthermore, the lack
of details on the experimental scenario prevents a complete
complexity analysis. Moreover, the MDP approach requires
a transformation phase, which can be long. Therefore we
believe that, when applicable, our approach proposes a better
solution in terms of simplicity and efficiency.

Starting from considerations similar to our work, Parr and
Russell (1997) propose the concept of hierarchical abstract
machines to introduce a HTN-style hierarchy to MDP and re-
inforcement learning. These authors show huge performance
improvements compared to flat MDP. However, like the previ-
ous discussed work, this method operates on grounded states,
moreover it is less expressive than the HTN formalism. In the
same direction Kuter and Nau (2005) have incorporated HTN-
style search strategies to MDP planning. The idea of planning
on a MDP is very common and representative of the field of
planning under uncertainty, where hierarchy is exploited to
reduce the search space. However, the MDP forces the use
of grounded predicates and states (C. Boutilier and Hanks
1999).

When compared to related work, our method clearly lies
on the side on being practically implementable on a physical
robot and capable of showing adaptability only after a few
tries. Moreover, it does not add any additional complexity to
the planning algorithm, nor does it require a transformation
or preprocessing of the planning domain. The extra-work

lies at the level of defining the contextualized actions, which
encode the a priori knowledge about the dependency between
the success rate of sequential actions in the real world.

HTN planning
In this paper, we propose to extend the HTN planning frame-
work with probabilities and to learn these probabilities online.
A HTN planner decomposes a goal task into subtasks until it
finds a sequence of actions that the robots can perform. The
planner knows the available methods and their possible de-
compositions. When given the goal task and the initial state
of the world, the HTN planner seeks an admissible sequence
of actions. The actions can affect the state of the world; so
the planner records these alterations.

As implementation, we use Planner 9 (Magnenat, Voelkle,
and Mondada 2009). The latter plans partially-ordered graphs
of tasks using forward decomposition. It keeps track of each
possible decomposition in a different search node. Planner 9
starts planning with a single node containing the goal task and
the initial state of the world. When visiting a node, Planner 9
iterates through all tasks that have no predecessor. If the task
is an action, it applies this action to the current state of the
world and stores the action as part of the plan. Otherwise,
Planner 9 instantiates the different possible decompositions
of the task. This process goes on until there is no more node
left or until Planner 9 has found a node with no more task to
decompose. When Planner 9 decomposes a task, it performs
lifting: it accumulates its preconditions for delayed check.
Planner 9 assigns a value to a variable only when an action
changes a relation this variable appears in.

Planner 9 chooses the node to visit by selecting the least
expensive one using A* (Hart, Nilsson, and Raphael 1968).
As cost it adds the total cost of the decomposition so far
(path-cost in A*) and the number of remaining tasks to be
decomposed (heuristic-cost in A*). One advantage of A*
with respect to a depth-first search is to allow free recursions
in the definition of the planning domain. This is useful in
robotics because real-world problems are often expressed
in a recursive way. The execution of the plan consists in
sequentially executing the actions.

Planning under task-execution uncertainty
As the HTN algorithm decomposes a high-level task into a
sequence of low-level actions, in general there are several
admissible sequences of actions that can achieve a given
task. Planner 9 finds the shortest plan when every task is
decomposed into one or more action. This might not be
the case in general, but it is always possible to transform a
planning domain such that every task decomposes into one or
more actions. Indeed, if a task might result in no action, we
can move this task one level up in the task hierarchy along its
preconditions. We can apply this scheme recursively until no
task could result in no action or a top-level task might result
in no action. In that case, we can remove this task from the
planning domain and check its precondition prior to calling
the planning algorithm. Thus Planner 9 will find the plan
with the shortest number of actions.

However, in the robotics context, the optimality of a plan
does not depend only on the number of actions, but also on
the actions themselves. In particular, each action has a differ-
ent utility depending on its type and on its outcome. With a
physical robot, actions might fail, and different actions have
different failure rates. Consequently we are not only inter-
ested in finding an admissible sequence of actions in the HTN
sense, but also want to find a plan whose execution holds a
high chance of success. So we take into account the expected
probability of success of a plan. Real world considerations
suggest to limit the maximum probability of success of any
action to be strictly smaller than 100 %. For instance, the
robot consumes energy with time, and from time to time
will have to recharge, preventing it from completing its plan.
Similarly, the robot is a physical device which wears down
and will eventually break. Moreover, HTN planning assumes
a stationary world, where nothing changes beside the robot.
This is not true in reality, and the longer the execution du-
ration, the more probable a change to occur. With success
probabilities of actions less than 100 %, the usefulness of a
plan implicitely depends on its length, and therefore, on the
duration of its execution. Technically speaking, and because
of the way A* does search, implementing these real-world
considerations also prevents the HTN algorithm from expand-
ing infinite loops of recursive tasks with actions having a
100 % success probability (the HTN planning domain allows
recursions).

To model the usefulness of a plan, we associate to each ac-
tion type a a corresponding utility u(a; r), which is a random
variable depending on the outcome r of the action type a. r is
a binary variable corresponding either to success (r = 1) or
failure (r = 0). For the utility function u, we only consider
the type of the action, not the parameters of every instance, be-
cause the parameters represent real-world objects that change
with the robot’s goal. We want Planner 9 to find the plan π
that has the maximum expected utility E [u(π)] (Schoemaker
1982). In the general case of HTN decomposition, a plan π is
a directed acyclic graph (DAG) of partially ordered actions.
However, let us first concentrate on the special case of a sin-
gle robot and consider the plan as a sequence of k actions
π = (a1, · · · , ak) = ak1 . We define the utility of a plan π to
be the product1 of the utilities of its actions:

u(π; r) =

k∏
i=1

u(ai; ri) (1)

Thus, by the definition of the mathematical expectation:

E [u(π)] =
∑

r∈{0,1}k
p(r|π)u(π; r)

=
∑
r

p(r|π)

k∏
i=1

u(ai; ri)

(2)

where p(r|π) is the probability of the sequence of possible
outcomes r = (r1, · · · , rk) for plan π.

1If an additive framework would be preferred, we could use the
log of utilities instead.

If an action fails, the robot stops the execution of the plan.
We thus consider the utility of a failure u(a; 0) to be 0. Thus,
the product of the utility in Equation 2 is non zero if and only
if all action executions result in a success. Equation 2 then
becomes:

E [u(π)] = p(r = 1|π)

k∏
i=1

u(ai; ri = 1)

=

k∏
i=1

p(ri = 1|ri−11 = 1, π)︸ ︷︷ ︸
θ(ai;π)

k∏
i=1

u(ai; ri = 1)

(3)

where 1 = (1, · · · , 1). From now on, we will denote
u(ai; ri = 1) by u(ai). Without loss of generality, we can
enforce 0 < maxa u(a) ≤ 1 by a simple re-normalisation.

Equation 3 shows that the expectation of the utility of a
plan is the product of the probabilities of success of each
successive action multiplied by the product of the utility
of each action. In all generality, the probability θ(a;π) of
successfully executing an action a in some plan π depends
only on some of the previous actions of π performed by the
robot2. We call these the dependency list ∆(a) of a; and
define a contextualized action % = (a,∆(a)). Through their
dependency list, actions fulfill a Markov property: θ(ai;π) =
p(ri = 1|ri−11 = 1, π) = p(ri = 1|ai,∆(ai)) = p(ri =
1|ρi) = θ(ρi). Therefore a unique parameter θ(%) is attached
to every contextualized action % and represents its probability
of success. The possible dependency lists are known a priori
from domain knowledge, and can be used by the developer
to build the Markov dependency graph, that is, to specify all
possible %. In robotics, we expect the set of % to be relatively
small, and clearly much smaller than the Herbrand base of
the planning problem.

As explained in the introduction of this section, HTN do-
main can be transformed such that every task is decomposed
into one or more actions. In this domain, we can use the
expected utility of a partial plan, E

[
u(ai1)

]
, to guide the A*

search (Hart, Nilsson, and Raphael 1968) of Planner 9 such
that it always finds the plan that has the largest expected
utility:

Theorem 1. Using − logE
[
u(ai1)

]
as the path cost for a

partial plan containing i actions and by using−n log θ̂ as the
heuristic cost, with n being the number of remaining tasks to
be decomposed, Planner 9 finds the plan that has the largest
expected utility.

where θ̂ = max% θ(%), which shall be strictly less than 1
since never-ending success does not happen in reality, as
previously pointed out.

Proof. A* is optimal if the heuristic function, in this case
−n log θ̂, is admissible, that is, if this function never overes-
timates the distance to the goal. Let us consider a node with
a partial plan ai1 and n remaining tasks to be decomposed. If
Planner 9 can decompose this node into a plan π, the latter

2In practice, it is even often independant of all other actions.

will have at least i+ n actions, as every task is decomposed
into one or more actions. Let us consider that this plan π has
k actions, with k ≥ i+ n; its expected utility is:

E [u(π)] = E
[
u(ai1)

]
E
[
u(ai+ni+1)

]︸ ︷︷ ︸
≤θ̂n

E
[
u(aki+n+1)

]︸ ︷︷ ︸
≤1

≤ E
[
u(ai1)

]
θ̂n

(4)

(with the convention that E
[
u(aki+n+1)

]
= 1 when k =

i + n). By plugging Inequality 4 into the path cost of the
final plan, and noting that log is a monotonic function, we
see that:

− logE [u(π)] ≥ − logE
[
u(ai1)

]
+ (−n log θ̂) (5)

This inequality shows that the path cost of the completed
plan is always larger than the path cost of a node plus the
heuristic cost. The heuristic function is thus admissible, and
A* always finds the plan of minimum cost, that is, the plan
of maximum expected utility.

Adaptable HTN planning
In the previous section, we have introduced a way to take
uncertainty into consideration within the HTN planning pro-
cess. Our method depends on knowing the probability of
successfully executing a contextualized action. If the world
is static and the properties of the elements do not change
with time, we can compute this probability based on statistics
about previous executions. However, if the world is dynamic
or if we want to estimate the probability of success online,
we can update an estimation of this probability during the
operations of the robot, which is the object of this section.

Let us suppose that the robot has executed N times a con-
textualized action %, at times t = (t1, · · · , tN), and that these
executions resulted in N outcomes r = (r1, · · · , rN). We
use an exponential forgetting model to estimate the proba-
bility θ(%) that the action % executed after time tN results
in a success by the following equation in which λ is a time
constant, accounting for possible changes in the world model:

θ(%) =

∑N
i=1 e

−λ(tN−ti)ri

(1 + ε)
∑N
i=1 e

−λ(tN−ti)
(6)

where ε is a small constant encoding that infinite success is
not possible in reality, ensuring θ̂ < 1 (see discussion in the
former section).

This equation suggests iteration over the whole history
to compute the final probability. However, it can be imple-
mented into an iterative version requiring only two param-
eters α and β such that θ(%) = α

β . Initially, α1 = r1 and
β1 = 1 + ε. Then, knowing αi and βi at time step i, their
values at time step i+ 1 become:

αi+1 = f · αi + ri+1

βi+1 = f · βi + 1 + ε

where f = e−λ(ti+1−ti)
(7)

The form of this learning algorithm is simple as long as we
can model the success rate of an action by a single parameter.

Relations
unary relations = {isBall, isGlass}
Actions
takeBall(o): precond: isBall(o)

takeGlass(o): precond: isGlass(o)

dropObject(o): precond: ∅

putObjectDown(o): precond: ∅
Methods
takeObjectBall(o)
task: takeObject(o)
precond: isBall(o)
subtasks: 〈takeBall(o)〉

takeObjectGlass(o)
task: takeObject(o)
precond: isGlass(o)
subtasks: 〈takeGlass(o)〉

fetchObjectCarefully(o)
task: fetchObject(o)
precond: ∅
subtasks: 〈takeObject(o), putObjectDown(o)〉

fetchObjectQuickly(o)
task: fetchObject(o)
precond: ∅
subtasks: 〈takeObject(o), dropObject(o)〉

Figure 1: Planning domain of object-fetching example.

Example
We have implemented the aforementioned algorithms in Plan-
ner 9, our open-source HTN planner3. We have validated the
implementation with the scenario described in the introduc-
tion. Figure 1 shows the planning domain, which is available
in Planner 9’s distribution4.

1. Fixed success rate

To validate the probabilistic planning and the contextualized
actions, in a first experiment we have set the utilities and suc-
cess rates as in Table 1. In this example, dropping an object
is 5 times more useful than putting it down gently. However,
doing so with a glass only succeeds 10 % of times. Starting
from an initial state isBall(ball) ∧ isGlass(glass), set-
ting fetchObject(o) as the goal returns takeBall(ball),
dropObject(ball) with a cost of 1.82 for the ball
and takeGlass(glass), putObjectDown(glass) with
a cost of 3.43 for the glass. The alternative plan
takeGlass(glass), dropObject(glass) has a cost of 4.02
and is therefore not the best. This shows that Planner 9 suc-
cessfully takes the probability of success into account when
planning.

3source code: https://gitorious.org/planner9
4domain in: problems/robot-proba2.hpp, experiment 1 in

programs/simple-proba.cpp: testContextualizedAction, ex-
periment 2 in programs/simple-proba.cpp: testLearning

0 20 40 60 80 100
time

es
tim

at
ed

 p
(r

 =
 1

)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ●

●

● ● ● ● ● ●

●

● ● ● ●

●

●

●

● ● ●

●

● ● ●

● take ball, drop

take glass, drop

put object down

other actions

Figure 2: Simulation of learning the success rate for 100 plan-act loops. The utilities and success rates in the task-execution
simulator are set as in Table 1, and ε = 0.01 and λ = 1/10. The top marks indicate a successful action, and the bottom marks
indicate a failed action. We can see that the probability of success of dropping a glass quickly decays.

Utilities of actions

takeBall 1
takeGlass 1
dropObject 5
putObjectDown 1

Success rates of context. actions

takeBall, dropObject 0.9
takeGlass, dropObject 0.1
putObjectDown 0.8
default 0.9

Table 1: Utilities and success rates for experiment 1.

2. Learning the success rate
To validate that the exponential forgetting model provides
adaptation to HTN planning, we have built a plan-act sim-
ulation experiment. For 100 trials, Planner 9 must plan
fetchObject(o) with o being alternatively “glass” and
“ball”. Initially, Planner 9 knows the contextualized actions
but not their success rates. For every action, we initialize the
forgetting model with a = 1 and b = 2 to set an uninforma-
tive prior of 50 % success. The utilities and contextualized
actions are like in Table 1.

Figure 2 shows the action outcomes and estimated success
rates resulting from the simulation. We see that initially,
Planner 9 tries to drop objects rather than to put them down,
because the former has a higher utility. However, in the case
of glass, this results in failures. Therefore, Planner 9 switches
to putting the glass down, which succeeds most of the times.
This experiment shows that the plan-act loop converges to
an estimation of the true rates sufficiently good to always
select the plan of maximum expected utility. Because we
select actions deterministically according to the mode of the
probability distribution, the process does not recover the true
success rates.

Discussion
The method we present in this paper is best suited when there
are different ways to implement a given task and conditions
specific to a particular environment affect what is the best

way. It still has some limitations, that we discuss in this
section, pointing out ways to alleviate them.

The proposed adaptation mechanism does not take the
values of the variables into account. This means that we
consider that the probability of success is independent of
the objects involved in the action. This is important as this
allows the planner to reason in the lifted space, which is
much smaller than the grounded space. However, this might
be limiting when the values of the grounded variables have
a strong influence on the action execution. For such cases,
we advise to add additional properties through the perception
stage reflecting this variability, and then to differentiate the
actions following these properties. With such measures, our
approach is suitable to handle these cases.

Until now, we have only considered the utility of plans that
consist of a linear sequence of actions, which are typically
the case for single robots. However, our reasoning still holds
for plans that are DAG of partially ordered actions. Indeed,
the utility function does not change, neither does the con-
sideration that a failure of any action results in a 0 utility.
However, the dependency lists might become complicated
and hard to define. Yet this is a difficulty for the formulation
of the a priori knowledge, not a limitation of the proposed
algorithm.

We have defined the utility solely as a function of the
action type. However, once an actions is grounded, it is
often possible to compute more precisely the utility of this
action. Equation 4 shows that as long as the utility of the
grounded action is smaller than θ̂, the heuristic function is
admissible. Thus it is possible to employ the additional
information from grounded actions, if utilities are properly
defined. For example, if an action consists of going from one
location to another, the utility of the grounded action can be
the utility of the action type, multiplied by a factor starting
from 1 and decreasing with the distance.

In general, the choice of the amount of knowledge to hand-
code in a robot and what to leave to learning is not easy.

If too much is hand-coded, the robot lacks adaptivity; but
if too much is left to learning, the robot learns too slowly
or even not at all. In the extreme case when everything is
probabilistic and subject to learning, the planning becomes
a partially observable MDP (Sridharan, Wyatt, and Dearden
2008). In this case, even modest-size problems are often
intractable with physical robots. We think that our approach
of defining the HTN domain and the dependency lists by hand
and letting the robot learn online the success rate of alterna-
tives is a good compromise for current hardware. However,
the difficulty to hand-code domain knowledge is a limiting
factor. Recent results on learning from plan traces (Zhuo et
al. 2010) or on developmental systems (Mugan and Kuipers
2011) might help with this respect, and are compatible with
the method we propose. Moreover, future developments
might shift this balance, probably in the direction of learning,
especially if robots can share their acquired knowledge with
their peers (Waibel et al. 2011). Indeed this might help to
overcome the limited amount of available training experience,
which we think is one of the factor currently limiting real-
world deployment of complex high-level learning algorithms
in robotics.

Conclusion
In this paper, we have proposed a method that adds adaptation
capabilities to robots using HTN planning. We have proved
that the planner finds the plan of maximal expected utility,
while retaining its lifting capability and efficient heuristic-
based search. We have experimentally validated our method
by implementing it into our open-source HTN planner and
simulating a plan-act loop. We have discussed possible im-
provements such as taking into account information about
the objects of action.

In general, we think that the idea of using the HTN domain
to constrain the space of possibles, and then to learn on the
constrained space, is interesting and might bring a new life
to the crossroad of automated planning, artificial intelligence,
machine learning, and robotics.

Acknowledgements
We thank the reviewers for their constructive comments.
This work was supported by the Swarmanoid (FP7-IST-FET
022888) and myCopter (FP7-AAT-2010-RTD-1) European
projects.

References
Alami, R.; Clodic, A.; Montreuil, V.; Sisbot, E.; and Chatila, R.
2006. Toward human-aware robot task planning. In AAAI Spring
Symp’To boldly go where no human-robot team has gone before,
39–46.

Beaudry, E.; Kabanza, F.; and Michaud, F. 2005. Planning for a mo-
bile robot to attend a conference. Advances in Artificial Intelligence
199–213.

Belker, T.; Hammel, M.; and Hertzberg, J. 2003. Learning to
optimize mobile robot navigation based on htn plans. In Robotics
and Automation, 2003. Proceedings. ICRA’03. IEEE International
Conference on, volume 3, 4136–4141. IEEE.

C. Boutilier, T. D., and Hanks, S. 1999. Decision-theoretic planning:
Structural assumptions and computational leverage. Journal of
Artificial Intelligence Research (JAIR) 11:1–94.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Planning:
theory and practice. Morgan Kaufmann Publishers.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis for the
heuristic determination of minimum cost paths. Systems Science
and Cybernetics, IEEE Transactions on 4:100–107.
Kuter, U., and Nau, D. 2005. Using domain-configurable search
control for probabilistic planning. In Proceedings of the National
Conference on Artificial Intelligence, volume 20, 1169–1175.
Li, N.; Kambhampati, S.; and Yoon, S. 2009. Learning proba-
bilistic hierarchical task networks to capture user preferences. In
Proceedings of the 21th International Joint Conference on Artificial
Intelligence (IJCAI).
Magnenat, S.; Voelkle, M.; and Mondada, F. 2009. Planner9, a
HTN planner distributed on groups of miniature mobile robots. In
Intelligent Robotics and Applications, Proceedings of the Second
International Conference on Intelligent Robotics and Application,
volume 5928 of Lecture Notes in Computer Science, 1013–1022.
Springer.
Magnenat, S. 2010. Software integration in mobile robotics, a sci-
ence to scale up machine intelligence. Phd thesis, EPFL, Lausanne,
Switzerland.
Meneguzzi, F.; Tang, Y.; Sycara, K.; and Parsons, S. 2011. An
approach to generate MDPs using HTN representations. In IJCAI
Workshop on Decision Making in Partially Observable Uncertain
Worlds: Exploring Insights from Multiple Communities.
Morisset, B., and Ghallab, M. 2008. Learning how to combine
sensory-motor functions into a robust behavior. Artificial Intelli-
gence 172(4–5):392–412.
Mugan, J., and Kuipers, B. 2011. Autonomous learning of High-
Level states and actions in continuous environments. IEEE Trans-
actions on Autonomous Mental Development PP(99):1.
Parr, R., and Russell, S. 1997. Reinforcement learning with hier-
archies of machines. Advances in Neural Information Processing
Systems 10:1043–1049.
Russell, S.; Norvig, P.; Canny, J.; Malik, J.; and Edwards, D. 2003.
Artificial intelligence: a modern approach. Prentice hall Englewood
Cliffs, NJ. second edition.
Schoemaker, P. 1982. The expected utility model: Its variants,
purposes, evidence and limitations. Journal of Economic Literature
529–563.
Schulz, S. 2002. A comparison of different techniques for ground-
ing near-propositional cnf formulae. In Proceedings of the 15th
International FLAIRS Conference, 72–76.
Sridharan, M.; Wyatt, J.; and Dearden, R. 2008. HiPPo: Hierar-
chical POMDPs for Planning Information Processing and Sensing
Actions on a Robot. In International Conference on Automated
Planning and Scheduling (ICAPS).
Waibel, M.; Beetz, M.; Civera, J.; D’Andrea, R.; Elfring, J.; Galvez-
Lopez, D.; Haussermann, K.; Janssen, R.; Montiel, J.; Perzylo, A.;
Schiessle, B.; Tenorth, M.; Zweigle, O.; and van de Molengraft, R.
2011. Roboearth. Robotics Automation Magazine, IEEE 18(2):69–
82.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implications.
Artificial Intelligence 174(18):1540–1569.

