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ABSTRACT
Pure feedback and pure open-loop feedforward helicopter pilot models are currently applied for predicting the perfor-
mance of pilot-helicopter systems. We argue that feedback models are likely to underestimate performance in many
realistic helicopter maneuvers, whereas inverse simulation models, which have an open-loop feedforward structure,
are likely to overestimate performance as they neglect typical human-in-the-loop characteristics. True verificationof
feedback and feedforward elements in helicopter pilot control behavior was never performed, however. This paper
proposes a pilot model containing a feedback and feedforward controller acting simultaneously and presents a method
to identify the hypothesized feedforward action from human-in-the-loop data collected in a simulator experiment. The
results of the human-in-the-loop experiment show that actual human performance is better than predicted by a pure
feedback model and worse than predicted by an (inverse dynamics) feedforward model. The identification results
suggest that the human pilot indeed utilizes feedforward strategies, but it was not possible to either confirm or refute
the model by means of the collected data and the developed analysis method.

INTRODUCTION

A mathematical model of helicopter pilots’ manual control be-
havior is useful for offline simulations to evaluate and quantify
pilot-helicopter system performance early in the design stage.
Different types of pilot models are used for different applica-
tions, such as shipboard operations (Refs. 1, 2) and ADS-33
certification maneuvers (Refs. 3,4).

The pilot models described for such applications in liter-
ature differ mainly in whether they have a feedback or an
open-loop feedforward structure. In this paper, we define a
feedback controller as a controller that operates on the error
between the commanded flight path and the current output of
the helicopter. An open-loop feedforward controller is defined
as a controller that takes the commanded flight path as the sole
input and generates the appropriate control signal to steerthe
helicopter along this reference trajectory.

In control systems, feedback is necessary for stability and
will provide a basic level of performance. The performance
can be improved by adding a feedforward path, where the op-
timal feedforward controller is equal to the inverse of the sys-
tem dynamics. We hypothesize that the human pilot makes
use of similar feedforward control strategies for certain heli-
copter maneuvering tasks to significantly improve his perfor-

Presented at the AHS 69th Annual Forum, Phoenix, Arizona,
May 21–23, 2013. Copyrightc© 2013 by the American Heli-
copter Society International, Inc. All rights reserved.

mance. This paper will investigate this hypothesis by devel-
oping a method to objectivelyidentify human control behav-
ior from actual human-in-the-loop measurements. Addition-
ally, this paper will investigate the consequences of includ-
ing a feedforward path in a pilot model for offline simulations
used to quantify pilot-helicopter system performance.

Feedback pilot models are usually based on the Crossover
model of McRueret. al (Refs. 5, 6), the Structural Model of
Hess (Refs. 1, 7) or the Optimal Control Model of Kleinman
et. al (Refs. 2, 8). Such models are usually straightforward
to implement and are based on objective measurements of hu-
man control behavior. It is, however, important to note that
these feedback models were intended to describe pilot dynam-
ics in tracking tasks with quasi-random target or disturbance
signals that appear unpredictable to the human (Refs. 6–8).
In real helicopter flight, however, the pilot is not trackingan
erratic reference path, but performs goal-directed maneuvers
such as forward flight, turns and climbs, hover pedal turns,
bob-up maneuvers and longitudinal and lateral repositions.
The feedback models do not take the cognitive capabilities of
the human that play an important role during such maneuvers
into account, such as his ability to acquire an internal model of
the system dynamics through learning, to make predictions on
the future course of the target and to use memorized knowl-
edge. One might therefore expect that purely feedback models
underestimate the performance of the pilot-helicopter system
for realistic maneuvers.
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The open-loop feedforward pilot models that are some-
times used in helicopter applications are usually described
in inverse simulation problems (Refs. 3, 4, 9–11). In inverse
simulations, a desired flight trajectory and the ‘forward’ heli-
copter equations of motion are given, from which the corre-
sponding control signal is calculated, usually done by numer-
ically inverting the helicopter dynamics. Although the inverse
solution might resemble the complex cognitive abilities ofthe
human pilot better than a pure feedback model, it does not,
in its most basic form, explicitly consider any human-in-the-
loop effects. As such, it might not be representative for what
the pilot-helicopter system can do, because 1) the pilot does
not know or cannot execute the optimal control signal, 2) the
pilot needs to leave margin to structural load limits, 3) the
pilot will also have to cope with unpredictable external dis-
turbances, and 4) because the pilot is unwilling or is trained
not to perform extreme maneuvers in certain flight conditions,
e.g. close to the ground (Ref. 9). Therefore, inverse simula-
tion models are likely tooverestimate the performance of the
pilot-helicopter system for realistic maneuvers.

Several authors have addressed the problem of overestima-
tion by the inverse simulation approach and proposed alterna-
tive model structures that model intrinsic limitations of the
pilot (Refs. 4, 10, 11) and performed human-in-the-loop ex-
periments to compare the inverse simulation result to human
data (Ref. 9). Still, none of the previous works have consid-
ered the possibility that the human pilot might operate a feed-
back loop and a feedforward pathsimultaneously and neither
did they attempt to objectively measure pilot control behavior,
for example through system identification techniques, to vali-
date their proposed model. As such, a pilot model for realistic
helicopter tasks, taking into account both feedback and feed-
forward control behavior, based on human-in-the-loop mea-
surements does not exist.

It is the objective of this paper to develop a helicopter pi-
lot model that takes both feedback and feedforward control
behavior into account and to 1) show the difference in per-
formance between a pilot model with and without an inverse
system dynamics feedforward path and 2) to identify from ex-
perimental data whether or not the human pilot employs such
feedforward control techniques. We hypothesize that 1) the
difference in performance between the two approaches is large
in a realistic control task and that 2) evidence of feedforward
behavior can be identified from experimental data.

System identification methods that can be used to identify
human control behavior require the control task to be a track-
ing task, where the human pilot is required to accurately fol-
low an explicitly presented target object or marker. Within
the wide range of realistic helicopter maneuvers, only few
will require such accurate control. We argue, however, that
ADS-33 certification tasks generally require highly accurate
control, such that they can be represented as tracking tasks
and induce very similar control behavior in the human pilots.
Therefore, this paper will study the hypotheses by means of
a tracking task resembling an ADS-33 lateral reposition ma-
neuver (Ref. 12).

The paper is structured as follows. First, we introduce the
ADS-33 lateral reposition maneuver and investigate from a
control theoretical perspective what control dynamics canbe
expected to play a role in this control task. Then, we per-
form simulations to investigate the performance effect of a
feedforward element, after which we investigate to what ex-
tent it is possible to identify from measured data whether the
human pilot is using feedforward strategies. After describing
the human-in-the-loop experiment and its results, the paper
will end with a discussion and conclusions.

ADS-33 LATERAL REPOSITION TASK

This paper studies pilot control dynamics in a tracking task
that resembles the ADS-33 lateral reposition task. This task
is intended to check the roll and heave axis handling qualities
during moderately aggressive maneuvering. The task consists
of accelerating laterally from a stabilized hover at 35 ft wheel
height up to a lateral ground speed of approximately 35 knots
followed by a deceleration to laterally reposition the rotorcraft
in a stabilized hover 400 ft down the course (Ref. 12).

A reference trajectory (or:target signal) was constructed
which meets the Good Visual Conditions (GVE) desired per-
formance requirements for cargo/utility rotorcraft, i.e.to com-
plete the maneuver within 18 seconds, see Fig. 1. Directly af-
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Fig. 1. The lateral target signal ft and its time derivatives.

ter performing one lateral reposition to the right (positive ḟt is
motion to the right) an identical reposition to the left is tobe
made. The green lines mark the start and end of the two lat-
eral repositions which by themselves take exactly 15 seconds.
This is 3 seconds shorter than the requirement of 18 seconds to
account for the time the pilot needs to acquire a stable hover.
The target signal presented in Fig. 1 is used throughout all
simulations in this paper, as well as in the human-in-the-loop
experiment.
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We will only consider the roll and lateral dynamics of the
helicopter, such that the other performance requirements re-
lating to longitudinal, vertical and heading motion do not play
a role in our analysis.

MODEL OF PILOT CONTROL DYNAMICS

In this section we study the task of the pilot during the ADS-
33 lateral reposition from a control theoretical perspective, but
constrain the model to the physiological abilities of the human
pilot. That is, the model will not make use of signals that can
not be perceived by the human senses and will contain a model
of the neuromuscular system. The primary senses of the pilot
are vision and the vestibular system; the contribution of both
will be discussed next.

A schematic representation of the out-of-the-window vi-
suals during the task is given in Fig. 2, which shows that four
‘fundamental’ signals can be perceived directly from the dis-
play: the lateral target signalft , the helicopter roll angleφ ,
the helicopter lateral positiony and the lateral tracking error
ey = ft − y. We assume that all linear and rotational veloci-

ft
ey

y φ

Fig. 2. A schematic representation of the out-of-the-
window visuals. The white aircraft symbol marks the cur-
rent lateral position and roll angle of the helicopter. The
white dot indicates the tracking target. Lateral tracking
error ey is to be minimized by the pilot. Recognizable ob-
jects, such as the red poles, act as fixed reference points for
the target and helicopter lateral position.

ties (ḟt , ėy, ẏ and φ̇ ) can also be perceived by means of the
visual system, but that accelerations can not be perceived vi-
sually (Ref. 13). Visual perception is usually associated with
considerable time delays, typically 0.1 to 0.3 seconds (Ref. 6).

We assume the vestibular system to be able to perceive lin-
ear accelerations ( ¨y) and rotational velocities,̇φ (Ref. 14).
Typical time delays associated with the vestibular system,
measured in closed loop control tasks, are 0.2 seconds
(Ref. 15).

Finally, an important feature of the target signal is that itis
identical throughout the entire experiment which enables the
human pilot to learn and memorize its relevant features and
use these for more effective control (Ref. 16).

Control scheme

A schematic block diagram of the lateral reposition task and
the proposed pilot control model is given in Fig. 3. The blocks
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Fig. 3. Schematic representation of the lateral reposition
task and the proposed pilot model.

contained within the dashed box are internal to the pilot, the
blocksCφ (s) andCy(s) represent the roll and lateral dynamics
of the helicopter, respectively. For the simplified helicopter
model considered in this paper, these dynamics are given as:

Cφ (s) =
Kcφ

s
, with Kcφ = 1.2 (1)

Cy(s) =
Kcy

s2 , with Kcy = 9.81 (2)

Signal fdφ is a disturbance signal and models the presence of
turbulence.

We assume a serial model structure (rather than a paral-
lel model structure) in which the pilot first closes and stabi-
lizes the inner (roll) loop and then the outer (lateral position)
loop. For both the roll and the lateral loop we consider three
pilot control elements: one feedforward path, one error feed-
back element and one feedback element responding to the re-
spective output signal of the helicopter. Both the inner and
the outer loop have an individual feedforward element, as op-
posed to one feedforward element takingft as input and giv-
ing an output directly tou. This is necessary to prevent the roll
loop feedback elementHeφ (s) to ‘fight’ (and thereby cancel)
the inputs of such a feedforward element.

Roll loop feedback The roll loop contains the helicopter roll
dynamics and all the inner loop pilot control elements, see
Fig. 4. The roll target signalφt is not a measurable signal be-
cause it is internal to the pilot and thuseφ is also not measur-
able. Therefore, the feedforward elementHtφ (s) and the error
feedback elementHeφ (s) respond to internal signals. The state
feedback elementHφ (s) is the only element responding to a
signal that is directly measurable and perceivable.

The dynamics of the neuromuscular system and the con-
trol manipulator are described byHnms(s) and are commonly
modeled as a second-order system,

Hnms(s) =
ω2

nms

s2+2ζnmsωnmss+ω2
nms

(3)

with natural frequencyωnms = 12 rad/s and damping ratioζnms

= 0.2 (Ref. 17).
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Fig. 4. Schematic representation of the inner (roll) loop,
containing pilot feedback and feedforward elements, heli-
copter roll dynamics and roll disturbance signal fdφ . The
roll target signal φt only exists in the pilot and is generated
by the outer loop controller.

The stability and disturbance-rejection properties of the
roll loop are determined byHeφ andHφ . The dynamics ofHeφ
necessary to achieve stability will depend on the content ofHφ
and vice versa. In general, the primary use of ‘state feedback’
elements, such asHφ , are to stabilize the system dynamics
and to improve the disturbance rejection performance of the
controller.

For the single integrator roll dynamics one can derive that
choosing a gain forHφ will improve the disturbance rejec-
tion performance of the controller, but will simultaneously
worsen the target-tracking performance. The decrease in
target-tracking performance is especially large due to thecon-
siderable time delay that is present in the state feedback gener-
ated by the human pilot (Ref. 15). In this task the overall task
performance is primarily determined by the controllers target-
tracking performance, because disturbances will be relatively
small compared to the size of the maneuver itself. Therefore,
we assume the contribution of the state feedback to be negli-
gibly small and thus assumeHφ (s) to be equal to zero.

For single integrator dynamics we can model the error
feedback pathHeφ as a gain and a time delay, based on the
Crossover Model (Ref. 6).

Heφ (s) = Keφ e
−τeφ s (4)

A typical value ofKeφ is 2.5, such that the crossover frequency
of the inner loop is equal to 3.0 rad/s. A typical value for the
time delayτeφ for single integrator dynamics is 0.25 seconds
(Ref. 18).

Roll loop feedforward If we assume the internal signalφt

to be known to the pilot and of predictable nature, we expect
the pilot to perform a feedforward operation onφt , based on
the results of Ref. 18. Ref. 18 investigated feedforward con-
trol strategies in a single-loop pitch-axis tracking task with
predictable target signals and found that feedforward control
behavior similar to inverse system dynamics can readily be
identified from experimental data. As can be verified from
Fig. 3, the ideal feedforward dynamicsHtφ are equal to the
inverse system dynamics: (Ref. 19)

HtφIdeal
(s) =

u(s)
φt(s)

=
1

Cφ (s)
⇒ u(s) =

1
Cφ (s)

φt(s). (5)

The system outputφ is then found to be:

φ(s) =Cφ (s) ·u(s) =Cφ (s) ·
1

Cφ (s)
·φt(s) = φt(s). (6)

That is, outputφ is exactly equal to the target signalφt , yield-
ing zero tracking error. We thus assume the inverse of the
helicopter roll dynamics forHtφ , see Eq. 7.

Htφ (s) = Ktφ
1

Cφ (s)
= Ktφ

s
1.2

(7)

GainKtφ is added to be able to tune the amount of feedforward
action. For optimal performanceKtφ = 1; for no feedforward
contributionKtφ = 0.

Lateral loop feedback The outer loop commands roll angles
(φt) to the inner loop and thereby controls the lateral dynamics
of the helicopter, see Fig. 5. In Fig. 5, the inner-loop pilotdy-
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Fig. 5. The lateral loop isolated from the complete loop.

namics and helicopter dynamics are represented simply by the
block ‘φ -loop’. If we assume the roll loop to be well-tuned,
we can approximate it as a gain close to unity and thereby
simplify the analysis of the lateral loop below. The stability
of the controller is determined byHy and Hey and their dy-
namics mutually depend on each other.

One can derive that rate feedback is the most effective form
of state-feedback for the outer loop, i.e.Hy(s) = Kyse−τys.
However, as also discussed for the roll loop, the state feedback
only improves the disturbance-rejection performance of the
pilot-helicopter system, but worsens the target-trackingper-
formance. Since this task primarily relies on target-tracking
performance, we expect that the contribution of the state-
feedback is only small and therefore we will neglect it in the
remainder of the paper. Hence, we assumeHy(s) = 0.

Based on the Crossover Model of McRueret. al (Ref. 6)
we expect the error feedback elementHey to be a gain at low
frequencies and a lead at higher frequencies:

Hey(s) = Key

(

Teys+1
)

e−τey s (8)

Typically, the outer loop crossover frequency is approximately
one third of the inner loop crossover frequency (Ref. 1), but
since we are considering an aggressive maneuver we will
choose model parameters that lead to slightly better perfor-
mance. That is, we chooseKey = 0.15 andTey = 1 seconds
such that the outer loop crossover frequency is approximately
1.5 rad/s. Furthermore, we set the outer loop time delayτey to
0.1 seconds, such that the total feedback time delay (including
the roll feedback delay of 0.25 s) becomes 0.35 seconds.
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Lateral loop feedforward Similar to the roll loop, we hy-
pothesize that the pilot performs a feedforward operation to
improve the tracking performance. For optimal performance
the feedforward elementHty should be equal to the inverse of
the lateral dynamics:

Hty = Kty
1

Cy(s)
= Kty

s2

9.81
(9)

The gainKty was added such that the contribution of the feed-
forward path can be tuned.

Model development conclusions

In the previous section a pilot model was developed for a roll-
lateral helicopter control task, assuming the helicopter dy-
namics as defined in Eqs. 1 and 2. The model was devel-
oped from a control theoretical perspective, but the possible
model elements were constrained to respond to signals that are
perceivable by the human pilot. The important conclusions
and findings are 1) that concerning the roll-loop feedback el-
ements the likely form ofHeφ is a gain and a time delay, 2)
that concerning the lateral-loop feedback elements the likely
form of Hey is a gain at low frequencies and a lead at higher
frequencies, 3) that these two findings result in identical con-
troller dynamics forHeφ andHey as were proposed by McRuer
et. al for steady-state compensatory tracking (Ref. 6).

Furthermore, the objective of this paper can now be formu-
lated more precisely by means of Fig. 3, i.e., it is our objec-
tive to 1) investigate the difference in performance between
a model containingHty and Htφ , and a model without these
elements, and 2) to identify from experimental data whether
or not the human pilot indeed performs feedforward control
behavior similar to inverse system dynamics forHty andHtφ .

PERFORMANCE SIMULATIONS

This section addresses the first objective of this paper, that is,
to investigate the difference in performance between purely
feedback behavior and a combination of feedback and feed-
forward behavior. Simulations are performed using the model
developed in the previous section and performance is mea-
sured by the maximum value of the lateral tracking errorey

occurring at any time during the simulation.

The performance of a controller depends on its target-
tracking performance and its disturbance-rejection perfor-
mance, which are two separate qualities. For a purely feed-
back controller a trade-off between the two qualities has to
be found. However, a controller containing feedforward can
use its feedforward path for target tracking and use the feed-
back loop to cope with the disturbances. As such, the useful-
ness of a feedforward element will depend on the presence,
and strength, of disturbances such as turbulence. For smallto
moderate disturbances, the feedforward element will have a
considerable contribution to the tracking performance. How-
ever, for large disturbances, the overall performance of the
controller is largely determined by its disturbance-rejection

performance and thus the contribution of the feedforward ele-
ment is only small.

Because the usefulness of the feedforward element is de-
pendent on the strength of the disturbance signal, the simula-
tions were performed as a function of the standard deviationof
disturbance signalfdφ , which disturbs the roll angle directly,
see Fig. 3, and is identical to the disturbance signal described
in the Experiment section. The pilot model parameter val-
ues as used during the simulations are given in Table 1. Four
different settings of the pilot model are defined, being a pure
feedback model (FB), a model containing feedback and roll
feedforward (RFF), a model containing feedback and lateral
feedforward (LFF) and a model containing feedback and both
roll and lateral feedforward (RLFF).
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Fig. 6. Tracking performance as a function of the roll dis-
turbance signal magnitude.

Fig. 6 shows the maximum tracking error for four differ-
ent settings of the pilot model as a function of the standard
deviation of the disturbance signalfdφ . Note that the maxi-
mum lateral error is plotted on a logarithmic scale. The dif-
ferences are, as expected, largest for small to moderate dis-
turbances. Roll feedforward by itself (RFF model) improves
the performance only marginally compared to the purely feed-
back case (FB model), but the sole addition of lateral feedfor-
ward (LFF model) greatly improves performance. Obviously,
the best performance for small to moderate disturbances is ob-
tained by the model containing both roll and lateral feedfor-
ward (RLFF model). For larger disturbances the differences
are very small, but feedforward still improves the performance
(especially roll feedforward).

For a disturbance signal with a standard deviation of 4 deg,
which falls within the range of what can be argued to be re-
alistic disturbance magnitudes, the maximum lateral tracking
error of the FB model is in the order of 3 m. The RLFF model,
containing both roll and lateral feedforward, has a maximum
error of only 0.26 m, which is one order of magnitude smaller.
This shows the importance of a proper pilot model, if it were
to be used for a simulation early in the design phase to de-
termine the roll lateral performance of the helicopter in an
absolute sense.
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Table 1. Four model parameters sets used in simulations throughout this paper.

Element Feedback,
FB

Roll Feedforward,
RFF

Lateral Feedforward,
LFF

Full Feedforward,
RLFF

Hty(s) = Kty
s2

9.81
Kty = 0 Kty = 0 Kty = 1 Kty = 1

Htφ (s) = Ktφ
s

1.2
Ktφ = 0 Ktφ = 1 Ktφ = 0 Ktφ = 1

Hey(s) = Key

(

Tey s+1
)

e−τey Key = 0.15,Tey = 1 s,τey = 0.1 s

Heφ (s) = Keφ e
−τeφ Keφ = 2.5, τeφ = 0.25 s

Hy(s) = 0, Hφ (s) = 0

IDENTIFICATION

This section addresses the second objective, that is to identify
from experimental data whether the human pilot indeed em-
ploys feedforward control techniques, as hypothesized. For
identification we wish to use a black box model for which no
assumptions concerning the underlying dynamics of the sys-
tem have to be made. More specifically, the system identifica-
tion method of choice is one based on Linear Time Invariant
ARX models, because such models have been used success-
fully for pilot control dynamics identification before (Ref. 20).

Identification approach

Ideally, we would like to find a method to identify transfer
functionsHty andHtφ directly from experimental data. In or-
der to do so, the signalφt (see Figs. 4 and 5) would have to
be measurable. However, sinceφt is a signal that only “ex-
ists” in the human, this is not possible. The derivation to be
presented next will show it is, however, possible to collectin-
direct evidence for the existence of feedforward action in the
human pilot. In order to do so, one will have to make two
assumptions on the form ofHey andHeφ .

First, we derive the lumped transfer function fromft and
ey to u, based on Fig. 3. We can writeu as a function of all the
basic inputs to the ‘human controller box’:

u =
(

Htφ φt +Heφ eφ +Hφ φ
)

Hnms (10)

with

φt = Hty ft +Heyey +Hyy (11)

We further note that:

eφ = φt −φ (12)

and that

ey = ft − y → y = ft − ey (13)

Substituting Eq. 11, 12 and 13 into Eq. 10, we find the follow-
ing equation:

u = Hnms(Htφ +Heφ )(Hty +Hy) ft

+ Hnms(Htφ +Heφ )(Hey −Hy)ey

+ Hnms(Hφ −Heφ )φ
(14)

We further note that the following relations exist:

y = φCy → φ = yC−1
y (15)

Substituting Eqs. 15 and 13 into Eq. 14 results in the following
equation:

u = Hnms

(

(Htφ +Heφ )(Hty +Hy)+(Hφ −Heφ )C
−1
y

)

ft

+ Hnms

(

(Htφ +Heφ )(Hey −Hy)− (Hφ −Heφ )C
−1
y

)

ey

(16)

When using an LTI ARX model using input signalsft
andey and output signalu one will obtain the following two
‘lumped’ transfer function estimates:

Yft =
(

(Htφ +Heφ )(Hty +Hy)+(Hφ −Heφ )C
−1
y

)

Hnms

Yey =
(

(Htφ +Heφ )(Hey −Hy)− (Hφ −Heφ )C
−1
y

)

Hnms

(17)
That is, the ARX method estimates the parameters of the ARX
model given in Eq. 18 in a least-squares fashion, from which
the estimatesYft =B ft (q)/A(q) andYey =Bey(q)/A(q) are ob-
tained.

A(q)u(t) = B ft (q) ft(t)+Bey(q)ey(t)+ ε(t) (18)

In Eq. 18 the parametersA(q) andB(q) are polynomials of
order na and nb, respectively, andε the modeling residual.
Fig. 7 is a schematic representation of the ARX model.

From observing Eq. 17, one can see why it is not possible
to directly obtain estimates forHty andHtφ : there are seven
unknowns (all transfer functions indicated with “H”) and only
two equations. We therefore look for possibilities to isolate
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Fig. 7. Schematic representation of the ARX model with
two input signals and one output signal and the two trans-
fer functions the model will estimate.

Hty andHtφ as much as possible. Hence, we add estimatesYft
andYey together to findYft+ey .

Yft+ey = Yft +Yey = (Htφ +Heφ )(Hty +Hey)Hnms (19)

By addingYft andYey together, we eliminate the contribution
of state feedback elementsHφ andHy such that comparable
control behavior in the pilot does not affect the analysis and it
can not, by mistake, be identified as feedforward behavior. It
is important to understand thatYft+ey does not have a physical
meaning, but that it does potentially allow us to find indirect
evidence for feedforward behavior inHty andHtφ , by making
assumptions on the dynamics ofHey , Heφ andHnms.

First, for the neuromuscular dynamicsHnms we assume the
second-order model as given in Eq. 3. This model is based on
experimental data and describes the inherent neuromuscular
dynamics of the arm, which mainly influence pilot dynamics
at frequencies above 7 rad/s. As this control task is similarto
previous experiments, we assume these dynamics to be iden-
tical.

Then, we observe the form of transfer functionsHty , Htφ ,
Hey andHeφ from a control theoretical perspective. The roll
error feedback elementHeφ is most likely a gain, see Eq. 4,
and the lateral error feedback elementHey is most likely a
gain at lower frequencies and a single differentiator (orlead)
at higher frequencies, see Eq. 8. The two feedforward ele-
mentsHty andHyφ are in the ideal case a double and a single
differentiator, respectively. Hence, if one were to compare the
Yft+ey dynamics of a controller with and without feedforward
and the aforementioned assumptions were true, distinct differ-
ences are to be seen.

The next section will elaborate on these differences and
show, by means of simulation, that such differences can in-
deed be identified by means of LTI models.

Verification using simulations

The result of Eq. 19 is to be verified by means of simulations,
for each of the four different parameter sets of the pilot model
developed in the preceding sections of the paper, see Table 1.
From the simulated signalsft , ey, andu we estimateYft and
Yey by means of an ARX model, from whichYft+ey can be
calculated.

Simulations with and without human remnant are per-
formed. Human remnant is defined by Ref. 6 as all non-
linearities in the human and all control inputs uncorrelated to

the pilot input signals. We observe the results for simulations
free of human remnant first.

Fig. 8 (next page) shows a Bode plot of the theoretical dy-
namics ofYft+ey and those estimated from the simulated sig-
nals, for all four settings of the model. At frequencies lower
than approximately 7 rad/s, the dynamics ofHty , Htφ , Hey , and
Heφ determine the dynamics ofYft+ey . At higher frequencies,
a peak in the magnitude is seen due to the neuromuscular dy-
namics,Hnms. Two important observations can be made con-
cerning the dynamics at frequencies lower than 7 rad/s.

First, one can see that theYft+ey transfer function is
markedly different for the four different model settings. For
the FB modelYft+ey is a single differentiator above 0.7 rad/s.
The corresponding phase is determined largely by the lead
term inHey and the time delay inHeφ . The phase rises slightly
above 0 deg around 2 rad/s, but then rapidly falls off due to
the time delay.

On the other hand, theYft+ey transfer function of the mod-
els that contain one or two feedforward paths have a much
steeper magnitude slope, and more phase lead compared to the
FB model. The effect of lateral feedforward is clear for fre-
quencies above 1 rad/s, both in magnitude and in phase, as can
be seen from comparing the LFF model to the FB model and
the RLFF model to the RFF model. The effect of roll feed-
forward (compare RFF to FB) is less clear, and only affects
the magnitude and phase above 5 rad/s. The effect of the two
feedforward paths on theYft+ey transfer function compared to
the FB model is a steeper magnitude slope and a more positive
phase. It is important to note that the absolute magnitude and
phase values depend on the chosen model parameter values,
but that the differences between the different models remain
the same.

The second observation to be made from Fig. 8 is that the
estimates of theYft+ey transfer function estimated from sim-
ulated data with our proposed identification method are al-
most identical to the corresponding theoretical solutions. This
shows that the ARX method is very successful in estimating
the underlying dynamics for a noise free simulation and also
serves as a check on the derivations made earlier in this sec-
tion.

Obviously, the data to be measured in a human-in-the-loop
experiment will contain human remnant and therefore sim-
ulations including simulated human remnant were also per-
formed. The simulated remnant is obtained by filtering a
white noise signal with a third-order low-pass filter and adding
this signal to the control signalu during the simulation. The
white noise filter is defined as in Eq. 20, withωn = 12.7 rad/s
andζn = 0.26, based on Ref. 17.

Hn(s) =
Knω3

n

(s2+2ζnωns+ω2
n )(s+ωn)

(20)

The gainKn was set to 0.2, such that the variance of the rem-
nant signal was approximately 15% of the variance of the total
control signalu.

Fig. 9 shows the estimatedYft+ey transfer function of 20
individual simulations with simulated remnant for each of the
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Fig. 8. Simulated estimation ofYft+ey compared to the analytical solution, for four different parameter sets of the feed-
forward gains Kty and Ktφ . Without simulated remnant.
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Fig. 9. Simulated estimation ofYft+ey compared to the analytical solution, for different settings of the feedforward gains
Kty and Ktφ . With simulated remnant.

four model settings with a thin, light colored line and the aver-
age of those 20 simulations with a thick, darker colored line.
The figure shows that the estimated frequency responses of
Yft+ey are not exactly identical to the theoretical solutions due
to the remnant, especially at higher frequencies. The impor-
tant features of theYft+ey dynamics, that enables one to dis-
tinguish one parameter set from the other are, however, still
clearly visible. That is, the models that contain either roll, lat-
eral or both feedforward paths still have a much steeper mag-
nitude curve at frequencies above 1 rad/s and a clearly positive
phase until 10 rad/s. Hence, we conclude that despite human
remnant it is possible to distinguish purely feedback control
behavior from behavior that also involves feedforward control

strategies.

EXPERIMENT

Method

To collect measurements of human pilots performing a lat-
eral reposition task, a human-in-the-loop experiment was con-
ducted.

Apparatus The experiment was performed on the MPI Cy-
berMotion Simulator (CMS) at the Max Planck Institute for
Biological Cybernetics (Ref. 21). The CMS is a motion sim-
ulator based on an anthropomorphic robot manufactured by

8



KUKA Roboter GmbH. Recently, two major developments
on the CMS were completed such that the current design dif-
fers significantly from that described in Ref. 21. First, a com-
pletely enclosed cabin to be used as subject station was de-
veloped containing a wide field-of-view visualization system.
Secondly, the entire anthropomorphic robot was placed on a
9.6 m long linear axis, allowing for a very large lateral or lon-
gitudinal motion space (depending on the robot orientation),
see Fig. 10.

Fig. 10. The MPI CyberMotion Simulator on a linear axis
and with the enclosed pilot station at the end of the an-
thropomorphic robot arm.

The roll motion was presented as pure roll motion (no
washout) with a motion gain of 0.5 using the rotational joint
closest to the pilot cabin (Ref. 21). The lateral motion was
presented as pure lateral motion (no washout) with a motion
gain of 0.06 using the linear axis, to scale down the large lat-
eral motion (400 ft or 121.9 m) of the lateral reposition to the
available lateral motion space of 9.6 m.

Subjects used the left/right axis of an electrical control
loaded helicopter cyclic stick (Wittenstein Aerocontroller) to
give control inputs. Subjects experienced a stiffness of 32N
rad−1, a damping force of 2.14 N s rad−1 and a mass of 0.4
N s2 rad−1, at the hand contact point located 35 cm above the
point of rotation. The maximum lateral stick deflection was
± 17 deg, the longitudinal axis of the stick was locked. The
stick gain was set to 3, such thatu equaled three times the
stick deflection in radians.

The visuals were generated by the game development sys-
tem Unity (Ref. 22) version 4.0.0f7 and represented the ADS-
33 lateral reposition setting as provided in Ref. 12, see Fig. 11.
A clearly visible white circle appeared in the 3D world indi-
cating the current position of the targetft . Another, smaller,
but also clearly visible red circle appeared in the 3D world

Fig. 11. Experiment visuals.

indicating the current lateral position of the helicoptery. It
was the objective of the subjects to control the helicopter such
that the distance between the two circles was minimized at all
times. Time delay measurements of the visual system were
performed throughout the experiment and were approximately
40 ms.

Forcing functions The lateral target signalft was as shown
in Fig. 1. The onset of each lateral reposition was made clear
to the subjects by means of a timer counting down from 5 to 0
seconds. The countdown text was only visible while counting
down and was placed such that it did not impair the subjects
ability to maintain a stable hover, but was still clearly visible.

The roll disturbance signalfdφ was a sum-of-sinusoid sig-
nal, appearing random to the human and consisted of eleven
sinusoids, as defined in Eq. 21 (in radians).

fdφ (t) = Kdφ

11

∑
k=1

Aφk sin

(

2π
Tm

nφk t +ϕφk

)

(21)

In Eq. 21,Tm designates the measurement time and is equal to
55 s. ParametersAφk , nφd andϕφk are defined in Table 2. Gain
Kdφ scaled the magnitude of the disturbance signal and was set
to 4 to obtain a disturbance signal with a standard deviationof
4 deg. The Power Spectral Density of both the lateral target

Table 2. Roll disturbance signal fdφ sinusoid properties.
k nφk Aφk ϕφk k nφk Aφk ϕφk

1 3 0.7 3.0164 7 31 0.07 3.0773
2 5 0.7 3.6567 8 41 0.07 2.7997
3 7 0.7 1.6974 9 53 0.07 4.0609
4 11 0.7 4.8099 10 71 0.07 4.4571
5 17 0.07 4.9964 11 87 0.07 4.7418
6 23 0.07 1.1742

signal ft and the roll disturbance signalfdφ is given in Fig. 12,
as well as a time history.

Procedure and independent measuresSubjects performed
the lateral reposition task until they reached a plateau in their
performance. Then, 10 measurement runs were recorded for
which all analyses are performed. Task performance was mea-
sured by the root-mean-square ofey and was reported to the
subjects after each trial to motivate subjects to perform as

9



S
f t
,f

t,
S

f d
,f

d

ω, rad/s

ft , m2 / rad s−1

fdφ , deg2 / rad s−1

10-1 100 101 102
10-15

10-10

10-5

100

105

(a) PSD of the forcing functions.

time, s

f d
φ

,d
eg

Measurement window

fdφ , deg

0 10 20 30 40 50 60

-10

-5

0

5

10

(b) Disturbance signal time trace.

Fig. 12. The power spectral density and time histories of
the roll disturbance signal fdφ .

good as possible. The individual tracking runs lasted 60 sec-
onds, of which the last 55 seconds were used as the measure-
ment data. The time traces of all system outputs,φ andy, the
tracking errorey, and the control signalu were recorded.

Subjects Four subjects participated in the experiment, all
males, with an average age of 32 years. One of the subjects
was a retired helicopter pilot with approximately 110 flight
hours. The other three subjects obtained familiarity with he-
licopter dynamics through radio controlled model helicopters
and fixed-base helicopter simulators.

Dependent measures

Performance measures Both the root-mean-square of the
lateral tracking error, RMS(ey), and the maximum lateral
tracking error, max(ey), are calculated from the measured
time traces.

Control behavior identification By means of a Linear Time
Invariant ARX model, the frequency responsesYft andYey are
identified for each of the ten measured runs of each subject
separately. From these estimates the sumYft+ey = Yft +Yey

is calculated. The ten obtained frequency responses are av-
eraged and compared toYft+ey frequency responses obtained
from the model developed in this paper.

The amount of free parameters of the ARX identification
method will be chosen such that it is able to capture the rele-
vant dynamics hidden in all the measured data, without over-
fitting. More precisely, the amount of free parameters is in-
creased while observing the stability of the estimated ARX
models and the quality of the fit, for each run of each subject.
The quality of the ARX model fit on each run is measured by
the Variance Accounted For, defined as:

VAF =

(

1−
∑N

k=0 |u(k)− û(k)|2

∑N
k=0 u(k)2

)

×100% (22)

In Eq. 22, ˆu is the modeled andu is the measured control
signal. As soon as adding one parameter causes one of the
40 ARX models to become unstable or the average VAF de-
creases, calculated over all 40 runs, no more free parameters
are added.

Hypotheses

Given the resulting task performance benefit compared to pure
feedback control, we hypothesize that for the lateral reposi-
tion task considered in this paper pilots will utilize feedfor-
ward control. Furthermore, we expect that our proposed ARX
identification method will show that evidence of feedforward
behavior can be identified from experimental data.

RESULTS

Performance measures

Fig. 13 shows the performance of the participants as they per-
formed the experiment runs. Fig. 13(a) shows the RMS value
of the lateral position error,ey, calculated over the entire mea-
surement window of 55 seconds for each run. Fig. 13(b)
shows the maximum lateral position error at any time within
the measurement window.
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Fig. 13. Performance scoresmax(ey) and RMS(ey) for all
runs performed by all four subjects. The last 10 runs of
each subject are the measurement runs.

Both figures show that all participants reached a plateau in
their performance after 20 to 30 runs and that there is a clear
correspondence between both the performance metrics. Per-
forming up to 80 additional runs (participant 2) did not allow
participants to further improve their performance. The figures
also show that all participants showed significant spread in
their error scores between runs. Differences between subse-
quent runs are sometimes as large as 50 to 100%. This shows
that the task at hand was a difficult task and was sensitive for
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small control errors that quickly led to large lateral tracking
errors.

Comparing the experimental results of Fig. 13(b) with the
simulation results of Fig. 6 forKdφ = 4 deg, we note that the
best human performance (max(ey) = 0.58 m for subject 1; 0.95
m for subject 2; 0.81 m for subject 3; 0.76 m for subject 4) is
better than the performance of the purely feedback model, the
FB model, (max(ey) = 3.0 m) and worse than the RLFF model
containing both feedforward paths (max(ey) = 0.28 m).

Time histories

Fig. 14 shows the lateral error signalsey of the ten measure-
ment runs of each subject and the mean of those runs. One
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Fig. 14. Theory tested with data from the test experiment.

can see that all subjects consistently lagged behind the target
during the first 5 seconds after the onset of each maneuver
(marked in the figure), despite being informed by the count-
down exactly when the target would start moving. Subjects
also consistently overshot the end position of the lateral repo-
sition, although it was very clear from the visual scene where
the target would stop moving.

Identification

Free ARX model parameters The amount of free parame-
ters of the ARX model was increased until the average quality
of fit, measured by the Variance Accounted For and calcu-
lated over all ten runs of all four subjects, decreased due to
overfitting. Fig. 15 shows the VAF of each of the ten mea-
surement runs of all four subjects and the average for an in-
creasing amount of free parameters. The figure shows that the
maximum average quality of fit was found forna = 4 andnb =
3. All results presented in the remainder of this section were
calculated forna = 4 andnb = 3.

ARX model fit quality ARX models were fit to the ten mea-
surement runs of each subject to identify the control dynamics
of the human pilots, which resulted in estimates ofYft andYey .
The obtained models were all stable, such that the Variance
Accounted For could be calculated by Eq. 22 for each mea-
surement run, see Fig. 16. The mean VAF of the ARX fits was
between 70 and 80%, which shows that the model was suc-
cessful in capturing the pilot control dynamics and suggests
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Fig. 15. The average VAF of all ten measurement runs for
all subjects and the mean over all runs, as a function of the
amount of free parameters.
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Fig. 16. VAF of the ten measurement runs for all subjects
and the mean over all runs forna = 4 andnb = 3.

that the estimates ofYft andYey are a good characterization of
the pilot behavior.

ARX model fits The transfer functionsYft andYey identified
by means of the ARX method were added together to obtain
Yft+ey as defined in Eq. 19. Fig. 17 presents the frequency
response functions ofYft+ey of all ten measurement runs and
the average over all ten runs, for each subject. The figure
shows thatYft+ey is consistent throughout all the runs for each
subject. This suggests that the behavior of the subjects was
constant and that the mean is a good representation of the data.

Fig. 18 shows only theYft+ey frequency response averaged
over the ten measurement runs, to reduce clutter and improve
clarity. Two important observations can be made from the
figure.

First, the estimated dynamics are reasonably consistent
across subjects, although differences exist. The magnitude of
Yft+ey appears to be a gain at low frequencies for all but one
subject. Around 0.5 rad/s the slope of the magnitude curves
increase and becomes steeper than a single differentiator,but
not quite as steep as a double differentiator. At approximately
6 rad/s the slope of the magnitude curve reduces and above
those frequencies the neuromuscular peak can be observed.
For most subjects this peak is located at a slightly lower fre-
quency (around 7 rad/s) than normally seen in tracking tasks
(around 12 rad/s).

The phase ofYft+ey is close to zero at lower frequencies
and gradually increases to more positive values. Around 3
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Fig. 17. Estimate ofYft+ey identified from single tracking runs and the average per subject.
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Fig. 18. The per subject average of the estimatedYft+ey and theoretical Yft+ey response functions based on the model
developed in this paper.

rad/s the phase peaks slightly above 90 degrees and then drops
off to lower values. The phase curve is very consistent across
subjects.

The second important observation is that theYft+ey curves
of the subjects seem to contain some key characteristics that
are also seen in theYft+ey curves for the feedforward models.
That is, the magnitude slope is steeper than a single differ-
entiator and the phase is clearly well above zero, which is
an indication for feedforward behavior. However, the experi-
mentally measured curves are certainly not a perfect fit to any
of the feedforward model curves, which calls for further re-
search.

DISCUSSION

In this paper, a helicopter pilot model for a tracking task rep-
resentative of the ADS-33 lateral reposition maneuver was de-
veloped. The model consists of both a feedback loop and two
feedforward paths, containing the inverse of the helicopter roll
and lateral system dynamics. This model and the results of a
pilot-in-the-loop experiment were used to investigate thetwo
main objectives of this paper, being 1) to investigate by means
of simulation how the performance of the pilot-helicopter sys-
tem depends on the presence of feedforward behavior and 2)
to identify from experimental data whether or not the human
pilot indeed employs such feedforward control techniques.

By means of simulations we showed that the tracking per-
formance depends strongly on the inclusion of the feedfor-
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ward paths in a realistic control task. That is, the performance
of the model including both roll and lateral feedforward is
one order of magnitude better than the purely feedback model.
Although the absolute performance of the model depends on
the chosen numerical values of the model parameters, it is in-
teresting to note that the best performance of all subjects in
the experiment was clearly better than the modeled pure feed-
back performance. Obviously, a comparison based on a sin-
gle performance metric is not conclusive for the underlying
pilot behavior, but it does support our motivation to investi-
gate feedforward behavior in the human pilot. That is, if a
simulated pilot model is used early in the design process to
predict the performance level of the helicopter it is important
that the model does not grossly over or underestimate the per-
formance.

Our second objective was to identify the hypothesized
feedforward control behavior during a human-in-the-loop ex-
periment. We found that it is impossible to directly identify
the hypothesized feedforward behavior. Because the pilot is
able to control on a large amount of input signals seven dif-
ferent control responses are to be identified; two of them are
feedforward elements. Direct identification would requireone
to measure the commanded roll signal,φt , which is a signal
‘internal’ to the pilot and can therefore not be measured.

Ref. 5 solved this problem by additionally presenting a roll
target signal that corresponded to the presented lateral target
signal ft and assuming this additional signal to be identical to
the internal roll command. This assumption, however, only
holds in cases where there are no disturbances on the roll mo-
tion and the pilot makes no control errors. As soon as distur-
bances or errors are introduced, the pilot will have to decide
between tracking the roll angle needed to correct for lateral
errors and tracking the explicitly presented roll target.

In this paper we took a different approach and made use
of the fact that the error feedback and feedforward dynamics
can be estimated in a ‘lumped’ form, designatedYft+ey , reduc-
ing the amount of unknown control elements to five, being the
roll and lateral feedforward elements, the roll and lateralerror
feedback elements and the neuromuscular system dynamics.
Then, by making assumptions on the content of three of those
control elements based on control theory, human physiology
and previous experiments, evidence for feedforward behav-
ior can be collected. More precisely, the dynamics of the term
Yft+ey would contain at most one differentiator and have a zero
or negative phase in case of predominantly feedback behavior.
Estimated dynamics ofYft+ey containing a steeper magnitude
slope than one differentiator and a mostly positive phase re-
sponse would point in the direction of feedforward control be-
havior. Tests by means of model simulations confirmed this
approach to be feasible, after which a human-in-the-loop ex-
periment was performed.

TheYft+ey dynamics measured from human subjects con-
tain characteristics similar to theYft+ey curves obtained from
the pilot model containing feedforward, although not as
clearly as one might expect. That is, the measured curves
are certainly not a perfect fit to the feedforward model, but

do achieve a higher magnitude slope than a single differentia-
tor and have a clearly more positive phase response than the
purely feedback model. This suggests that our proposed trans-
fer functions for the feedforward terms are not perfect. We see
this as an additional motivation for further research into heli-
copter pilot modeling by means of physiologically valid pilot
models and human-in-the-loop experiments.

To put this study into the proper perspective, it is impor-
tant to note that several modifications of the original ADS-33
lateral reposition task had to be made in order to measure the
pilot control dynamics. The most radical modification is that
the task was changed from a ‘free’ control task into a tracking
task, exactly prescribing the lateral position of the helicopter
throughout the entire maneuver. The ADS-33 specifies the
lateral reposition task by prescribing the amount of distance
that needs to be covered by lateral motion within a certain
time. Theoretically, the maneuver can be flown in many dif-
ferent ways, but taking into account the stringent longitudinal,
vertical and heading motion requirements the amount of ‘ac-
ceptable’ maneuver trajectories is strongly reduced. Thatis,
in practice the pilot will attempt to keep the helicopter within
a narrow range of animaginary reference trajectory for which
all requirements are met at the same time. Therefore, the
tracking task is probably similar, but not exactly the same as
the original task and small differences in control behaviormay
still be expected.

Additionally, the dynamics of the helicopter were simpli-
fied to simple linear transfer functions neglecting, amongst
others, coupling and drag effects. Especially the roll dynamics
were simplified considerably to make the task easier. The roll
dynamics were a single integrator, where more realistic trans-
fer function models also consider the unstable lateral phugoid,
lateral sway damping and roll damping (Ref. 23). The more
complex dynamics would require the pilot to also generate
lead at higher frequencies in the roll loop and continuously
stabilize the unstable lateral phugoid, which would not only
make the task more difficult but would also affect the identifi-
cation problem.

Based on the presented results and our experience with this
experiment we provide the following recommendations for fu-
ture research.

First, it is important to better understand the assumptions
concerning the error feedback elements that need to be made
to obtain evidence of feedforward behavior and to validate
them by means of human-in-the-loop experiments. This vali-
dation should preferably be done simultaneously to the feed-
forward identification, because due to the adaptive nature of
the human it is difficult to assume certain control dynamics
to remain constant across different control tasks and experi-
ments.

Furthermore, our current approach was to qualitatively
compare the overall ‘shape’ of the measuredYft+ey dynamics
to the shape of theYft+ey dynamics of the models. It would
be more objective to define a metric by which these dynam-
ics can be compared quantitatively and to investigate which
model parameters affect the similarity in particular.
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Finally, it is important to investigate how the way the task
is defined and presented to the pilots affect their behavior.In
this study the task was presented as a tracking task in order to
make use of validated system identification methods, but this
does not exactly represent the ADS-33 certification task.

CONCLUSIONS

This paper investigated helicopter pilot control behaviorin a
tracking task resembling an ADS-33 lateral reposition task.
Based on control theoretical concepts and knowledge of hu-
man physiology and perception, we hypothesized that the in-
clusion of an inverse system dynamics feedforward path is
necessary to obtain an accurate prediction of helicopter per-
formance. From simulations we conclude that the perfor-
mance of the pilot-helicopter system is one order of magni-
tude better for a pilot model that includes feedforward ac-
tion than for a pure feedback pilot model. It was found that
the feedforward control dynamics can not be identified from
experimental data directly, but that indirect evidencecan be
collected for the existence of feedforward action, by making
reasonable assumptions on the feedback control behavior. Re-
sults from a human-in-the-loop experiment in which four sub-
jects performed the lateral reposition task suggest evidence
for the conclusion that the human pilot utilizes feedforward
strategies, but does not result in a complete pilot model for
this task.
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