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ABSTRACT

Pure feedback and pure open-loop feedforward helicopl@rmpibdels are currently applied for predicting the perfor-
mance of pilot-helicopter systems. We argue that feedbaudtets are likely to underestimate performance in many
realistic helicopter maneuvers, whereas inverse sinmnatiodels, which have an open-loop feedforward structure,
are likely to overestimate performance as they neglectaiuman-in-the-loop characteristics. True verificatbn
feedback and feedforward elements in helicopter pilotmbriitehavior was never performed, however. This paper
proposes a pilot model containing a feedback and feedfara@ntroller acting simultaneously and presents a method
to identify the hypothesized feedforward action from hurtathe-loop data collected in a simulator experiment. The
results of the human-in-the-loop experiment show thatadiuman performance is better than predicted by a pure
feedback model and worse than predicted by an (inverse dgeafeedforward model. The identification results
suggest that the human pilot indeed utilizes feedforwawteggies, but it was not possible to either confirm or refute
the model by means of the collected data and the developégsanaethod.

INTRODUCTION mance. This paper will investigate this hypothesis by devel
oping a method to objectivelyentify human control behav-
A mathematical model of helicopter pilots’ manual contretb jor from actual human-in-the-loop measurements. Addition
havior is useful for offline simulations to evaluate and difgn  ally, this paper will investigate the consequences of idelu
pilot-helicopter system performance early in the desigget  ing a feedforward path in a pilot model for offline simulation
Different types of pilot models are used for different apgti  used to quantify pilot-helicopter system performance.
tions, such as shipboard operations (Refs. 1,2) and ADS-33
certification maneuvers (Refs. 3,4). Feedback pilot models are usually based on the Crossover
The pilot models described for such applications in litermodel of McRueret. al (Refs. 5, 6), the Structural Model of
ature differ mainly in whether they have a feedback or ahless (Refs. 1,7) or the Optimal Control Model of Kleinman
open-loop feedforward structure. In this paper, we define & a (Refs. 2,8). Such models are usually straightforward
feedback controller as a controller that operates on the errt0 implement and are based on objective measurements of hu-
between the commanded flight path and the current output &fn control behavior. It is, however, important to note that
the helicopter. An open-loop feedforward controller is dledi these feedback models were intended to describe p”Ot d-ynam
as a controller that takes the commanded flight path as tee sés in tracking tasks with quasi-random target or distudean
input and generates the appropriate control signal to tteer Signals that appear unpredictable to the human (Refs. 6-8).
helicopter along this reference trajectory. In real helicopter flight, however, the pilot is not trackiag
%Iratic reference path, but performs goal-directed magrsuv

In control systems, feedback is necessary for stability ansuch as forward flight, turns and climbs, hover pedal turns,

\éV::] %:S\i/r{r?er:vggsgc :;’deilno?g;%;?m:% ;?ﬁ air;?;T::Z%pb—up maneuvers and longitudinal and lateral repositions
b y g path, The feedback models do not take the cognitive capabilifies o

timal feedforward controller is equal to the inverse of thie-s the human that play an important role during such maneuvers
tem dynamics. We hypothesize that the human pilot makes p'ay P 9

. . . iNto account, such as his ability to acquire an internal rhofle
use of similar feedforward control strategies for certadti-h . : -
copter maneuvering tasks to sianificantly improve his erfo the system dynamics through learning, to make predictions o

P g 9 yimp HEM0 e future course of the target and to use memorized knowl-
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The open-loop feedforward pilot models that are some- The paper is structured as follows. First, we introduce the
times used in helicopter applications are usually desdribeADS-33 lateral reposition maneuver and investigate from a
in inverse simulation problems (Refs. 3,4,9-11). In inversecontrol theoretical perspective what control dynamics lean
simulations, a desired flight trajectory and the ‘forwardlih  expected to play a role in this control task. Then, we per-
copter equations of motion are given, from which the correform simulations to investigate the performance effect of a
sponding control signal is calculated, usually done by numefeedforward element, after which we investigate to what ex-
ically inverting the helicopter dynamics. Although theénse tent it is possible to identify from measured data whether th
solution might resemble the complex cognitive abilitieshef  human pilot is using feedforward strategies. After deseghb
human pilot better than a pure feedback model, it does ndhe human-in-the-loop experiment and its results, the pape
in its most basic form, explicitly consider any human-ie-th will end with a discussion and conclusions.
loop effects. As such, it might not be representative fortwha

the pilot-helicopter system can do, because 1) the pilos doe ADS-33 LATERAL REPOSITION TASK
not know or cannot execute the optimal control signal, 2) the

pilot needs to leave margin to structural load limits, 3) therhjs paper studies pilot control dynamics in a tracking task
pilot will also have to cope with unpredictable external-disthat resembles the ADS-33 lateral reposition task. This tas
turbances, and 4) because the pilot is unwilling or is tr@inejs intended to check the roll and heave axis handling qealiti
not to perform extreme maneuvers in certain flight condgjon quring moderately aggressive maneuvering. The task dsnsis
e.g. close to the ground (Ref. 9). Therefore, inverse simulgf accelerating laterally from a stabilized hover at 35 fewh
tion models are likely t@verestimate the performance of the hejght up to a lateral ground speed of approximately 35 knots
pilot-helicopter system for realistic maneuvers. followed by a deceleration to laterally reposition the rotaft

Several authors have addressed the problem of overestinfa@ Stabilized hover 400 ft down the course (Ref. 12).

tion by the inverse simulation approach and proposed altern A reference trajectory (ortarget signal) was constructed
tive model structures that model intrinsic limitations bkt which meets the Good Visual Conditions (GVE) desired per-
pilot (Refs. 4,10, 11) and performed human-in-the-loop exformance requirements for cargo/utility rotorcraft, ki@ com-
periments to compare the inverse simulation result to humaptete the maneuver within 18 seconds, see Fig. 1. Directly af
data (Ref. 9). Still, none of the previous works have consid-
ered the possibility that the human pilot might operate dfee
back loop and a feedforward pagimultaneously and neither 100}
did they attempt to objectively measure pilot control bebav £ ool
for example through system identification techniques, te va
date their proposed model. As such, a pilot model for realist
helicopter tasks, taking into account both feedback and-fee -50
forward control behavior, based on human-in-the-loop mea- ‘
surements does not exist. 2 1
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It is the objective of this paper to develop a helicopter pi- Hg
lot model that takes both feedback and feedforward control-< | Measurbment window i
behavior into account and to 1) show the difference in per- | '— ! ! !
formance between a pilot model with and without an inverse 29 m 2 20 0 0 0
system dynamics feedforward path and 2) to identify from ex-
perimental data whether or not the human pilot employs such
feedforward control techniques. We hypothesize that 1) the%,
difference in performance between the two approachegjs lar =
in a realistic control task and that 2) evidence of feedfodva )
behavior can be identified from experimental data. 0 10 20 30 40 50 60

time, s

System identification methods that can be used to identify
human control behavior require the control task to be a traclig. 1. The lateral target signal f; and its time derivatives.
ing task, where the human pilot is required to accurately fol _
low an explicitly presented target object or marker. Withirter performing one lateral reposition to the right (pogtfyvis
the wide range of realistic helicopter maneuvers, only fewnotion to the right) an identical reposition to the left ish®
will require such accurate control. We argue, however, thahade. The green lines mark the start and end of the two lat-
ADS-33 certification tasks generally require highly actera eral repositions which by themselves take exactly 15 sexond
control, such that they can be represented as tracking tasKsis is 3 seconds shorter than the requirement of 18 seconds t
and induce very similar control behavior in the human pilotsaccount for the time the pilot needs to acquire a stable hover
Therefore, this paper will study the hypotheses by means dhe target signal presented in Fig. 1 is used throughout all
a tracking task resembling an ADS-33 lateral reposition maimulations in this paper, as well as in the human-in-tteglo
neuver (Ref. 12). experiment.



We will only consider the roll and lateral dynamics of theControl scheme
helicopter, such that the other performance requirements r
lating to longitudinal, vertical and heading motion do niatyp A schematic block diagram of the lateral reposition task and
arole in our analysis. the proposed pilot control model is given in Fig. 3. The bkck

re—s - - - == - - - = hl fd
th H ‘ Hth h [ ¢
MODEL OF PILOT CONTROL DYNAMICS ‘ !
ft ‘ He, ﬁj— He, %j)-{Hnms}ﬁ: u‘ Co TJ ‘ G Y

In this section we study the task of the pilot during the ADS-
33 lateral reposition from a control theoretical perspectbut ! Human controlle
constrain the model to the physiological abilities of thentaun
pilot. That is, the model will not make use of signals that can . ) ) .
not be perceived by the human senses and will contain a mod@¥: 3- Schematic representation of the lateral reposition
of the neuromuscular system. The primary senses of the piIEf'i\s‘k and the proposed pilot model.

are vision and the vestibular system; the contribution @ahbo
will be discussed next.

contained within the dashed box are internal to the pila, th
A schematic representation of the out-of-the-window viblocksCy(s) andCy(s) represent the roll and lateral dynamics

suals during the task is given in Fig. 2, which shows that fou?f the helicopter, respectively. For the simplified helitesp

‘fundamental’ signals can be perceived directly from the di model considered in this paper, these dynamics are given as:

play: the lateral target signd}, the helicopter roll anglep, K

the helicopter lateral positiopand the lateral tracking error Cy(s) = ﬁ7 with ch =12 (1)

ey = fy —y. We assume that all linear and rotational veloci- S

Koy
Cy(s) = 2 with K¢, = 9.81 2
Signal fd(p is a disturbance signal and models the presence of

turbulence.

We assume a serial model structure (rather than a paral-
lel model structure) in which the pilot first closes and stabi
lizes the inner (roll) loop and then the outer (lateral gorit
loop. For both the roll and the lateral loop we consider three
pilot control elements: one feedforward path, one errodfee
back element and one feedback element responding to the re-
spective output signal of the helicopter. Both the inner and
Fig. 2. A schematic representation of the out-of-the- the outer loop have an individual feedforward element, as op
window visuals. The white aircraft symbol marks the cur-  posed to one feedforward element takifags input and giv-
rent lateral position and roll angle of the helicopter. The ing an output directly ta. This is necessary to prevent the roll
white dot indicates the tracking target. Lateral tracking loop feedback elemet, (s) to ‘fight’ (and thereby cancel)
error ey is to be minimized by the pilot. Recognizable ob- the inputs of such a feedforward element.
jects, such as the red poles, act as fixed reference points for

the target and helicopter lateral position. Roll loop feedback The roll loop contains the helicopter roll
dynamics and all the inner loop pilot control elements, see
. ) Fig. 4. The roll target signa is not a measurable signal be-
ties (fr, &, y and ) can also be perceived by means of thgayse it is internal to the pilot and theg s also not measur-
visual System, but that accelerations can not be percei\/ed &ble ThereforE, the feedforward elembn}(s) and the error
sually (Ref. 13). Visual perception is usually associatéfl W feedback elemertte, (s) respond to internal signals. The state
considerable time delays, typically 0.1 to 0.3 seconds.@®ef feedback elemeriti,(s) is the only element responding to a

ﬁignal that is directly measurable and perceivable.

We assume the vestibular system to be able to perceive i
ear accelerationsy)‘and rotational velocitiesp (Ref. 14). The dynamics of the neuromuscular system and the con-
Typical time delays associated with the vestibular systent;ol manipulator are described bnms(s) and are commonly
measured in closed loop control tasks, are 0.2 second®deled as a second-order system,

(Ref. 15).
2

Finally, an important feature of the target signal is th& it Hrms(S) = < s @)

. nary. P ) larget sig &% + 2{nmsWhmsS+ Wms

identical throughout the entire experiment which enabites t

human pilot to learn and memorize its relevant features amwith natural frequencyoms = 12 rad/s and damping ratfams

use these for more effective control (Ref. 16). =0.2 (Ref. 17).
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******** UI¢7 - oo fdw The system outpup is then found to be:

He, !
[ 1
e u S) =Cyp(s)-u(s) =Cyp(s) —— - @a(s) = a(s). 6
(;‘ @ He(p i(li uﬂ"iHnn’s‘:_u’ C(p . (p (p( ) (P( ) ( ) (P( ) CQ(S) m( ) (R( ) ( )
That is, outputp is exactly equal to the target sigrl yield-

|

|

I ing zero tracking error. We thus assume the inverse of the
Human controlle . .
el Bttt N helicopter roll dynamics fok;,, see Eq. 7.

Fig. 4. Schematic representation of the inner (roll) loop, Hy (e = Ktwi = t(pi 7
containing pilot feedback and feedforward elements, heli- ¢ Co(s) 12
copter roll dynamics and roll disturbance signal fq,. The  Gaink;, is added to be able to tune the amount of feedforward

roll target signal ¢ only exists in the pilot and is generated  action. For optimal performands,, = 1; for no feedforward
by the outer loop controller. contributionKt(p =0.

The stability and disturbance-rejection properties of theateral loop feedback The outer loop commands roll angles
roll loop are determined bije, andH,. The dynamics oHe (@) to the inner loop and thereby controls the lateral dynamics
necessary to achieve stability will depend on the contehigof of the helicopter, see Fig. 5. In Fig. 5, the inner-loop pilpt
and vice versa. In general, the primary use of ‘state feddbac
elements, such ad,, are to stabilize the system dynamics | !
and to improve the disturbance rejection performance of the f ey, Us} @ | @-loop

controller. : See Fig. 4. 4('0’ /

For the single integrator roll dynamics one can derive that —- Hy !
choosing a gain foH, will improve the disturbance rejec- ! Human controllef
tion performance of the controller, but will simultanegusl
worsen the target-tracking performance. The decrease in_. ,
target-tracking performance is especially large due tatme Fig. 5. The lateral loop isolated from the complete loop.
siderable time delay that is present in the state feedbaukrge

ated by the human pilot (Ref. 15). In this task the overak tas, , ics and helicopter dynamics are represented simplyeby th
performance is primarily determined by the controllergear block ‘g-loop’. If we assume the roll loop to be well-tuned,

tracking performance, because disturbances will be velsti we can approximate it as a gain close to unity and thereby

small compared to the size of the maneuver itself. Thereforgimp”fy the analysis of the lateral loop below. The stapili

we assume the contribution of the state feedback to be neg(IJLr the controller is determined by andHe, and their dy-
gibly small and thus assunt,(s) to be equal to zero. namics mutually depend on each gther. &

For single integrator dynamics we can model the error one can derive that rate feedback is the most effective form
feedback patiHe, as a gain and a time delay, based on thgs siate-feedback for the outer loop, i.ély(s) = Kyse s,
Crossover Model (Ref. 6). However, as also discussed for the roll loop, the state faeidb

e s only improves the disturbance-rejection performance ef th
H%(S) =Ke,e ™ ) pilot-helicopter system, but worsens the target-traclieg
ormance. Since this task primarily relies on target-timagk

Atypical value ofKe, is 2.5, such that the crossoverfrequenc;t ¢ ¢ that th tributi f the stat
of the inner loop is equal to 3.0 rad/s. A typical value for th erformance, we expect that the contribution ot the state-

time delayTe, for single integrator dynamics is 0.25 second eedback is only small and therefore we will neglect it in the
(Ref. 18) ¢ remainder of the paper. Hence, we assttpes) = 0.

Based on the Crossover Model of McRuwetr al (Ref. 6)
we expect the error feedback elemetf to be a gain at low

Roll loop feedforward If we assume the internal signal &equencies and a lead at higher frequencies:

to be known to the pilot and of predictable nature, we expe
the pilot to perform a feedforward operation @n based on He,(S) = Ke, (Tos+1) e ™° (8)

the results of Ref. 18. Ref. 18 investigated feedforward-con ) .

trol strategies in a single-loop pitch-axis tracking taskhw TYPically, the outer loop crossover frequency is approxefya
predictable target signals and found that feedforwardrobnt ONe third of the inner loop crossover frequency (Ref. 1), but
behavior similar to inverse system dynamics can readily biNce we are considering an aggressive maneuver we will
identified from experimental data. As can be verified fron$N100se model parameters that lead to slightly better perfor
Fig. 3, the ideal feedforward dynamits, are equal to the Mance. That is, we choos&, = 0.15 andTe, = 1 seconds

inverse system dynamics: (Ref. 19) such that the outer loop crossover frequency is approxignate
1.5 rad/s. Furthermore, we set the outer loop time delato
u(s) 1 1 0.1 seconds, such that the total feedback time delay (imgjud

Hoiea(® = a9 = Cog) ~ 1O =

Cy(9) @) () the roll feedback delay of 0.25 s) becomes 0.35 seconds.



Lateral loop feedforward Similar to the roll loop, we hy- performance and thus the contribution of the feedforwaed el
pothesize that the pilot performs a feedforward operation tment is only small.

improve the tracking performance. For optimal performance

the feedforward elemertt;, should be equal to the inverse of
the lateral dynamics:

Because the usefulness of the feedforward element is de-
pendent on the strength of the disturbance signal, the aimul
tions were performed as a function of the standard deviation

1 I disturbance signaldq,, which disturbs the roll angle directly,
Hy, = Kty@ = Kty@ ©)  see Fig. 3, and is identical to the disturbance signal desdri
in the Experiment section. The pilot model parameter val-

The gainK;, was added such that the contribution of the feeddes as used during the simulations are given in Table 1. Four

forward path can be tuned. different settings of the pilot model are defined, being a&pur
feedback model (FB), a model containing feedback and roll
Model development conclusions feedforward (RFF), a model containing feedback and lateral

feedforward (LFF) and a model containing feedback and both

In the previous section a pilot model was developed for a rolroll and lateral feedforward (RLFF).
lateral helicopter control task, assuming the helicopter d

namics as defined in Egs. 1 and 2. The model was devel- 107
oped from a control theoretical perspective, but the pbssib
model elements were constrained to respond to signalsrthat a
perceivable by the human pilot. The important conclusions
and findings are 1) that concerning the roll-loop feedbaek el
ements the likely form oHe is a gain and a time delay, 2)
that concerning the lateral-loop feedback elements thedylik
form of He, is a gain at low frequencies and a lead at higher
frequencies, 3) that these two findings result in identioal-c
troller dynamics foHe, andHg, as were proposed by McRuer

- i 2 . L L
et. al for steady-state compensatory tracking (Ref. 6). 102 e - " = "

Furthermore, the objective of this paper can now be formu- o(fa, ). deg
lated more precisely by means of Fig. 3, i.e., it is our objec- ) ) ,
tive to 1) investigate the difference in performance betwee' 19- 8- Tracking performance as a function of the roll dis-
a model containing-hy and Ht(p, and a model without these turbance signal magnitude.
elements, and 2) to identify from experimental data whether
or not the human pilot indeed performs feedforward control

behavior similar to inverse system dynamicsifigr andH,. Fig. 6 shows the maximum tracking error for four differ-
ent settings of the pilot model as a function of the standard

deviation of the disturbance signg] . Note that the maxi-
PERFORMANCE SIMULATIONS mum lateral error is plotted on a Ioaiqarithmic scale. The dif-

This section addresses the first objective of this paperigha ferences are, as expected, Iargt_ast for small to mo_derate dis
to investigate the difference in performance between purefurbances. Roll feedforward by itself (RFF model) improves

feedback behavior and a combination of feedback and feefile Performance only marginally compared to the purelyfeed
forward behavior. Simulations are performed using the rhod8ack case (FB model), but the sole addition of lateral feedfo

developed in the previous section and performance is me§ard (LFF model) greatly improves performance. Obviously,
sured by the maximum value of the lateral tracking esr the best performance for small to moderate disturbancéds is o

occurring at any time during the simulation. tained by the model containing b(_)th roll and Iatera_l feedfor
ward (RLFF model). For larger disturbances the differences

The performance of a controller depends on its targelye yery small, but feedforward still improves the perfoncm
tracking performance and its disturbance-rejection perfo(especially roll feedforward).

mance, which are two separate qualities. For a purely feed-

back controller a trade-off between the two qualities has to For a disturbance signal with a standard deviation of 4 deg,
be found. However, a controller containing feedforward cawhich falls within the range of what can be argued to be re-
use its feedforward path for target tracking and use the-feedlistic disturbance magnitudes, the maximum lateral tragk
back loop to cope with the disturbances. As such, the usefidtror of the FB model is in the order of 3 m. The RLFF model,
ness of a feedforward element will depend on the presenamntaining both roll and lateral feedforward, has a maximum
and strength, of disturbances such as turbulence. For tmnallerror of only 0.26 m, which is one order of magnitude smaller.
moderate disturbances, the feedforward element will haveTdis shows the importance of a proper pilot model, if it were
considerable contribution to the tracking performancewHo to be used for a simulation early in the design phase to de-
ever, for large disturbances, the overall performance ef thtermine the roll lateral performance of the helicopter in an
controller is largely determined by its disturbance-réggt absolute sense.
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Table 1. Four model parameters sets used in simulations thrghout this paper.
Element Feedback, | Roll Feedforward, | Lateral Feedforward, Full Feedforward,
FB RFF LFF RLFF
&
th (S) = Ktyﬁ Kty =0 Kty =0 Kty =1 Kty =1
S
Ht(p(S) = Ktqﬂﬁ Kt(p =0 K'[(p =1 Kt(p =0 K'[(p =1

He, (S) = Ke,& Ke, =25,T, = 0255

Hy(s) = 0,Hy(s) =0

IDENTIFICATION Substituting Eq. 11, 12 and 13 into Eq. 10, we find the follow-

ing equation:
This section addresses the second objective, that is ttifiglen

from experimental data whether the human pilot indeed em- u= Hinms(Ht, + He, ) (Hyy +Hy) i
ploys feedforward control techniques, as hypothesized. Fo + Hams(Ht, +He,) (He, — Hy)ey (14)
identification we wish to use a black box model for which no n Homs(Ho — He, )@
assumptions concerning the underlying dynamics of the sys- R
tem have to be made. More specifically, the system identificgye further note that the following relations exist:
tion method of choice is one based on Linear Time Invariant
ARX models, because such models have been used success- y=@Cy— o= yCy’l (15)
fully for pilot control dynamics identification before (R&0).

Substituting Egs. 15 and 13 into Eq. 14 results in the foliayvi

equation:

Identification approach
u=

Ideally, we would like to find a method to identify transfer
functionsHy, andH;, directly from experimental data. In or-
der to do so, the signat (see Figs. 4 and 5) would have to
be measurable. However, singeis a signal that only “ex-
ists” in the human, this is not possible. The derivation to bgn
presented next will show it is, however, possible to colieet
direct evidence for the existence of feedforward actiorhan t

Hnms ((Ht(p + He(p)(th + Hy) + (H(p — He(,,)Cf) ft

+  Hnms ((Ht¢ +He,)(He, —Hy) — (Hyp — He(p)C]1> &
(16)
When using an LTI ARX model using input signafg

dey and output signali one will obtain the following two
‘lumped’ transfer function estimates:

human pilot. In order to do so, one will have to make two - 1
assumptions on the form éfs, andHe,. Y = <(Ht<ﬂ +He, ) (Hyy +Hy) + (Hp — Hey )Gy ) Homs
First, we derive the lumped transfer function frdimand Yo, = ((an +He,)(Hg, — Hy) — (Hp — Heq,)C]l> Homs

(17)
Thatis, the ARX method estimates the parameters of the ARX
model given in Eq. 18 in a least-squares fashion, from which
the estimate¥y, = By, (q)/A(q) andYe, = Bg,(q) /A(q) are ob-
tained.

gy tou, based on Fig. 3. We can writeas a function of all the
basic inputs to the ‘human controller box’:

with A@)u(t) = B () (1) + Be, (@ey(t) +£(t) (1)
In Eg. 18 the parametei(q) and B(qg) are polynomials of
order ng and n,, respectively, and the modeling residual.

Fig. 7 is a schematic representation of the ARX model.

@ = Hy, ft + He 8y + Hyy (12)

We further note that:

Co=@—9 (12) From observing Eq. 17, one can see why it is not possible
to directly obtain estimates fd#, and Hi,: there are seven
unknowns (all transfer functions indicated witd™) and only

two equations. We therefore look for possibilities to isela

and that

g=fi-y—-y="fi—g (13)



l Ny the pilot input signals. We observe the results for simatai
free of human remnant first.

i slvy = BAf‘(ig;) 1/A(q) Fig. 8 (next page) shows a Bode plot of the theoretical dy-
namics ofYs, ¢, and those estimated from the simulated sig-
Be(a) nals, for all four settings of the model. At frequencies lowe
Y Yo = %q) 9 9. u than approximately 7 rad/s, the dynamicsHf, H; , He,, and
He, determine the dynamics &f1¢,. At higher frequencies,
a peak in the magnitude is seen due to the neuromuscular dy-
namics,Hnyms. TwO important observations can be made con-
cerning the dynamics at frequencies lower than 7 rad/s.
First, one can see that th‘éft+e\/ transfer function is
Ht, andH;, as much as possible. Hence, we add estimétes markedly different for the four different model settingsorF
andYe, together to findrf, .q,. the FB model;, ¢, is a single differentiator above 0.7 rad/s.
The corresponding phase is determined largely by the lead
Yierey = Yii +Ye, = (Ht, +Hey)(Hty +He )Homs - (19)  term inHe, and the time delay ifle,. The phase rises slightly

By addingY;, andYe, together, we eliminate the contribution above 0 deg around 2 rad/s, but then rapidly falls off due to

of state feedback elemenit, andH, such that comparable the time delay.

control behavior in the pilot does not affect the analysid ian On the other hand, thé, ¢, transfer function of the mod-

can not, by mistake, be identified as feedforward behavior. ¢lIs that contain one or two feedforward paths have a much

is important to understand thég , , does not have a physical steeper magnitude slope, and more phase lead compared to the

meaning, but that it does potentially allow us to find indirecFB model. The effect of lateral feedforward is clear for fre-

evidence for feedforward behavior ki, andH,, by making guencies above 1 rad/s, both in magnitude and in phase, as can

assumptions on the dynamicskdf , He, andHnms. be seen from comparing the LFF model to the FB model and
First, for the neuromuscular dynamidsms we assume the the RLFF model to the RFF model. The effect of roll feed-

second-order model as given in Eq. 3. This model is based &yward (compare RFF to FB) is less clear, and only affects
experimental data and describes the inherent neuromuscufd® magnitude and phase above 5 rad/s. The effect of the two
dynamics of the arm, which mainly influence pilot dynamicd&edforward paths on th, ,.¢, transfer function compared to
at frequencies above 7 rad/s. As this control task is sirtalar the FB modelis a steeper magnitude slope and a more positive

previous experiments, we assume these dynamics to be ig@hase. Itis important to note that the absolute magnitude an
tical. phase values depend on the chosen model parameter values,

Then. we observe the form of transfer functidm§, th,, but that the differences between the different models nemai

: . the same.
He, andHe, from a control theoretical perspective. The roll ] . )
error feedback elemerie, is most likely a gain, see Eq. 4, The second observation to be made from Fig. 8 is that the

and the lateral error feedback eleméty, is most likely a estimates of thé, . transfer function estimated from sim-
gain at lower frequencies and a single differentiatori éad) ulated data with our proposed identification method are al-

at higher frequencies, see Eq. 8. The two feedforward eld0stidentical to the corresponding theoretical solutidriss
mentsH, andHy, are in the ideal case a double and a singléhOWS that the ARX method is very successful in estimating

differentiator, respectively. Hence, if one were to conagtae the underlying dynamics for a noise free simulation and also
dynamics of a controller with and without feedforwardServes as a check on the derivations made earlier in this sec-

n

Fig. 7. Schematic representation of the ARX model with
two input signals and one output signal and the two trans-
fer functions the model will estimate.

th+6y
and the aforementioned assumptions were true, distirferdif tion.
ences are to be seen. Obviously, the data to be measured in a human-in-the-loop

The next section will elaborate on these differences arfgkPeriment will contain human remnant and therefore sim-

show, by means of simulation, that such differences can izlations including simulated human remnant were also per-
deed be identified by means of LTI models. formed. The simulated remnant is obtained by filtering a

white noise signal with a third-order low-pass filter andiadd
this signal to the control signal during the simulation. The
white noise filter is defined as in Eq. 20, wiily = 12.7 rad/s
The result of Eq. 19 is to be verified by means of simulationg&nd{, = 0.26, based on Ref. 17.

for each of the four different parameter sets of the pilot etlod Kncof

developed in the preceding sections of the paper, see Table 1 Hn(s) = = > n (20)
From the simulated signals, &, andu we estimatey;, and (8 +2¢nans + wf) (s + ah)
Yo, by means of an ARX model, from whiclk e, can be The gainK, was set to 0.2, such that the variance of the rem-
calculated. nant signal was approximately 15% of the variance of thé tota

Simulations with and without human remnant are percontrol signal.
formed. Human remnant is defined by Ref. 6 as all non- Fig. 9 shows the estimated, ., transfer function of 20
linearities in the human and all control inputs uncorralgte individual simulations with simulated remnant for eachlod t
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Verification using simulations
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Fig. 9. Simulated estimation ofY;, o, compared to the analytical solution, for different settings of the feedforward gains
Ky, and Kty With simulated remnant.

four model settings with a thin, light colored line and theav strategies.

age of those 20 simulations with a thick, darker colored.line

The figure shows that the estimated frequency responses of EXPERIMENT
Yi+e, @re not exactly identical to the theoretical solutions due

to the remnant, especially at higher frequencies. The impd}/IethOd

tant features of th¥s, ¢ dynamics, that enables one to dis- ) i

tinguish one parameter set from the other are, howevelr, sthP coIIect.r_neasurements of _human pilots per_formmg a lat-
clearly visible. That is, the models that contain eithek; tat- eral reposition task, a human-in-the-loop experiment voas ¢
eral or both feedforward paths still have a much steeper mai ucted.

nitude curve at frequencies above 1 rad/s and a clearlyiymsit

phase until 10 rad/s. Hence, we conclude that despite humARParatus The experiment was performed on the MPI Cy-
remnant it is possible to distinguish purely feedback agintr berMotion Simulator (CMS) at the Max Planck Institute for

behavior from behavior that also involves feedforward caint Biological Cybernetics (Ref. 21). The CMS is a motion sim-
ulator based on an anthropomorphic robot manufactured by



KUKA Roboter GmbH. Recently, two major developments
on the CMS were completed such that the current design dif-
fers significantly from that described in Ref. 21. First, aneo
pletely enclosed cabin to be used as subject station was de
veloped containing a wide field-of-view visualization syst
Secondly, the entire anthropomorphic robot was placed on a
9.6 m long linear axis, allowing for a very large lateral ando
gitudinal motion space (depending on the robot orientgtion
see Fig. 10.

Fig. 11. Experiment visuals.

indicating the current lateral position of the helicopyerlt

was the objective of the subjects to control the helicopiehs
that the distance between the two circles was minimized at al
times. Time delay measurements of the visual system were
performed throughout the experiment and were approximatel
40 ms.

Forcing functions The lateral target signdl was as shown

in Fig. 1. The onset of each lateral reposition was made clear
to the subjects by means of a timer counting down from 5to 0

seconds. The countdown text was only visible while counting

down and was placed such that it did not impair the subjects
ability to maintain a stable hover, but was still clearlyibis.

The roll disturbance signethw was a sum-of-sinusoid sig-
nal, appearing random to the human and consisted of eleven
sinusoids, as defined in Eq. 21 (in radians).

i (2
fa, (1) =Ka, > Agsin (Tn(n(t + ¢<n<> (21)
Fig. 10. The MPI CyberMotion Simulator on a linear axis k=1 "
and with the enclosed pilot station at the end of the an- |n Eq. 21,T, designates the measurement time and is equal to
thropomorphic robot arm. 55 s. Parameter, , ng, and¢y, are defined in Table 2. Gain
) ] Kg, scaled the magnitude of the disturbance signal and was set
The roll motion was presented as pure roll motion (nQq 4 1o obtain a disturbance signal with a standard deviaton

washout) with a motion gain of 0.5 using the rotational joiny deg. The Power Spectral Density of both the lateral target
closest to the pilot cabin (Ref. 21). The lateral motion was

presented as pure lateral motion (no washout) with a motion
gain of 0.06 using the linear axis, to scale down the large lat Table 2. Roll disturbance signalfy, sinusoid properties.
eral motion (400 ft or 121.9 m) of the lateral repositionte th | k | ng | Ag P, K | ng | Ag Pq,

available lateral motion space of 9.6 m. 3 0.7 | 3.0164]] 7 | 31 ] 0.07| 3.0773

Subjects used the left/right axis of an electrical control 5 | 0.7 | 36567 8 | 41 | 0.07 | 2.7997
loaded helicopter cyclic stick (Wittenstein Aerocontes)lto 7 | 07 ]16974| 9 | 53 | 0.07 | 4.0609
give control inputs. Subjects experienced a stiffness dili32 11| 0.7 | 48099 10 | 71 | 0.07 | 4.4571
rad-1, a damping force of 2.14 N s radl and a mass of 0.4 17 | 0.07 | 4.9964 | 11 | 87 | 0.07 | 4.7418
N s? rad™1, at the hand contact point located 35 cm above the 23 | 0.07 ) 1.1742
point of rotation. The maximum lateral stick deflection was
+ 17 deg, the longitudinal axis of the stick was locked. Thaignalf; and the roll disturbance sign&, is given in Fig. 12,
stick gain was set to 3, such thatequaled three times the as well as a time history.
stick deflection in radians.

The visuals were generated by the game development sy&ocedure and independent measuresSubjects performed
tem Unity (Ref. 22) version 4.0.0f7 and represented the ADShe lateral reposition task until they reached a plateaheir t
33 lateral reposition setting as provided in Ref. 12, seeHig performance. Then, 10 measurement runs were recorded for
A clearly visible white circle appeared in the 3D world indi-which all analyses are performed. Task performance was mea-
cating the current position of the targkt Another, smaller, sured by the root-mean-squareeyfand was reported to the
but also clearly visible red circle appeared in the 3D worldubjects after each trial to motivate subjects to perform as
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105F ‘ ‘ ] In Eq. 22,U"is the modeled and is the measured control
| . | signal. As soon as adding one parameter causes one of the
& Tttt 40 ARX models to become unstable or the average VAF de-
PR ] creases, calculated over all 40 runs, no more free parasneter
F 1010, ded Trads 1 | are added.
1015 fr,m?/rad st
o P s 1 Hypotheses

PSD of the forcing functions.
@ S‘ © t‘ © orgng ynctlons Given the resulting task performance benefit compared ® pur

— fa, - deg] feedback control, we hypothesize that for the lateral repos
tion task considered in this paper pilots will utilize feedf
ward control. Furthermore, we expect that our proposed ARX
identification method will show that evidence of feedfordiar
behavior can be identified from experimental data.

i
100
I
I

-10F : Measurement window
0 iO éO . éO ‘40 ‘50 60
time, s RESULTS

(b) Disturbance signal time trace.
Performance measures
Fig. 12. The power spectral density and time histories of

the roll disturbance signal g, . Fig. 13 shows the performance of the participants as they per

) o ) formed the experiment runs. Fig. 13(a) shows the RMS value
good as possible. The individual tracking runs lasted 60 seg¢ e |ateral position errogy, calculated over the entire mea-

onds, of which the last 55 seconds were used as the measWgrement window of 55 seconds for each run. Fig. 13(b)
ment data. The time traces of all system outpgtandy, the gy the maximum lateral position error at any time within
tracking errorey, and the control signal were recorded. the measurement window.

Subjects Four subjects participated in the experiment, all igg N [ swii—sub 2 sus— su4|
males, with an average age of 32 years. One of the subjects 15|\ ‘ ‘ ‘ ‘ ‘ ‘ ‘
was a retired helicopter pilot with approximately 110 flight Es !

hours. The other three subjects obtained familiarity wigh h @ *o¢[\ (A

licopter dynamics through radio controlled model helievpt 50

and fixed-base helicopter simulators. Zg R e T

RMS(ey

Dependent measures

P
o

Performance measures Both the root-mean-square of the
lateral tracking error, RM&(), and the maximum lateral

tracking error, mage,), are calculated from the measured
time traces.

Control behavior identification By means of a Linear Time
Invariant ARX model, the frequency respon¥gsandYe, are
identified for each of the ten measured runs of each subject
separately. From these estimates the ¥4me, = Yy, + Yo, (b) maxey)
is calculated. The ten obtained frequency responses are av-

eraged and compared ¥g ¢, frequency responses obtainedFig. 13. Performance scoresnax(ey) and RMS(gy) for all
from the model developed in this paper. runs performed by all four subjects. The last 10 runs of

The amount of free parameters of the ARX identificatiorfach Subject are the measurement runs.
method will be chosen such that it is able to capture the rele-
vant dynamics hidden in all the measured data, without over- Both figures show that all participants reached a plateau in
fitting. More precisely, the amount of free parameters is intheir performance after 20 to 30 runs and that there is a clear
creased while observing the stability of the estimated ARX%0rrespondence between both the performance metrics. Per-
models and the quality of the fit, for each run of each subjeciorming up to 80 additional runs (participant 2) did not allo

The quality of the ARX model fit on each run is measured byarticipants to further improve their performance. Therfégu
the Variance Accounted For, defined as: also show that all participants showed significant spread in

N o their error scores between runs. Differences between subse
VAF — (1 Ykeo|u(k) —a(k)| > «1000  (22) duentruns are sometimes as large as 50 to 100%. This shows

max(y), m
OFRPNWAOITON®O

SR ou(k)2 that the task at hand was a difficult task and was sensitive for
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small control errors that quickly led to large lateral trieack
errors.

Comparing the experimental results of Fig. 13(b) with the
simulation results of Fig. 6 foh(d(p = 4 deg, we note that the
best human performance (may(= 0.58 m for subject 1; 0.95
m for subject 2; 0.81 m for subject 3; 0.76 m for subject 4) is
better than the performance of the purely feedback model, th
FB model, (maxg) = 3.0 m) and worse than the RLFF model
containing both feedforward paths (may(= 0.28 m). 40l e

Na 1 2 2 3 3 4 4 5 5 6 6
Np 1 1 2 2 3 3 4 4 5 5 6

VAF, %

Time histories Fig. 15. The average VAF of all ten measurement runs for

Fig. 14 shows the lateral error signalsof the ten measure- all subjects and the mean over all runs, as a function of the
ar@ount of free parameters.

ment runs of each subject and the mean of those runs. On

. 1000 - =7 - - ~--- Pt e e mrm o

15¢-
1t
0.5

920

80
£ 0%
& -0.5

VAF, %

70

60'—><—Subj.1 ——=Subj.3 [« T T T T T T T T [
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time, s

Fig. 14. Theory tested with data from the test experiment. F19- 16. VAF of the ten measurement runs for all subjects
and the mean over all runs forng =4 andn, = 3.

can see that all subjects consistently lagged behind thettar that the estimates of;, andYe, are a good characterization of
during the first 5 seconds after the onset of each maneuuée pilot behavior.

(marked in the figure), despite being informed by the count-

down exactly when the target would start moving. SubjectaRX model fits The transfer function¥;, andYe, identified
also consistently overshot the end position of the lateb+ hy means of the ARX method were added together to obtain
sition, although it was very clear from the visual scene \eheryftJrey as defined in Eq. 19. Fig. 17 presents the frequency

the target would stop moving. response functions of, .o, of all ten measurement runs and
the average over all ten runs, for each subject. The figure
Identification shows tha, .., is consistent throughout all the runs for each

subject. This suggests that the behavior of the subjects was

Free ARX model parameters The amount of free parame- constant and that the mean is a good representation of the dat
ters of the ARX model was increased until the average quality _.
! . Fig. 18 shows only th¥j, ¢, frequency response averaged
of fit, measured by the Variance Accounted For and calcu- .
X ver the ten measurement runs, to reduce clutter and improve
lated over all ten runs of all four subjects, decreased due

overfitting. Fig. 15 shows the VAF of each of the ten mea(-:.?amy‘ Two important observations can be made from the
- figure.
surement runs of all four subjects and the average for an in*

creasing amount of free parameters. The figure shows that theFirst, the estimated dynamics are reasonably consistent

maximum average quality of fit was found fay = 4 andn, =  across subjects, although differences exist. The magniéid
3. All results presented in the remainder of this sectionewerYr+e, @ppears to be a gain at low frequencies for all but one
calculated fon, = 4 andny, = 3. subject. Around 0.5 rad/s the slope of the magnitude curves

increase and becomes steeper than a single differentiaior,

ARX model fit quality ARX models were fit to the ten mea- not quite as steep as a double Qiﬁerentiator. At approxatyiat
surement runs of each subject to identify the control dycami & rad/s the slope of the magnitude curve reduces and above
of the human pilots, which resulted in estimate¥p&ndYe, . those frequer_mes th.e neuro_muscular peak can be observed.
The obtained models were all stable, such that the VarianE@" Most subjects this peak is located at a slightly lower fre
Accounted For could be calculated by Eq. 22 for each me&Q4Yency (around 7 rad/s) than normally seen in tracking tasks
surement run, see Fig. 16. The mean VAF of the ARX fits wa@round 12 rad/s).

between 70 and 80%, which shows that the model was suc- The phase o, .¢, is close to zero at lower frequencies
cessful in capturing the pilot control dynamics and suggesand gradually increases to more positive values. Around 3

11
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Fig. 18. The per subject average of the estimateWy ., and theoretical Y11, response functions based on the model
developed in this paper.

rad/s the phase peaks slightly above 90 degrees and thes drop DISCUSSION

off to lower values. The phase curve is very consistent acros _ ) )
subjects. In this paper, a helicopter pilot model for a tracking tagh-re

resentative of the ADS-33 lateral reposition maneuver veas d
veloped. The model consists of both a feedback loop and two
feedforward paths, containing the inverse of the helicotié

The second important observation is that Yhee, curves and lateral system dynamics. This model and the results of a
of the subjects seem to contain some key characteristits tilot-in-the-loop experiment were used to investigatettie
are also seen in thé, .o, curves for the feedforward models. Main objectives of this paper, being 1) to investigate bymsea
That is, the magnitude slope is steeper than a single diffe?f simulation how the performance of the pilot-helicoptgs-s
entiator and the phase is clearly well above zero, which &M depends on the presence of feedforward behavior and 2)
an indication for feedforward behavior. However, the ekper to identify from experimental data whether or not the human
mentally measured curves are certainly not a perfect fityo apilot indeed employs such feedforward control techniques.
of the feedforward model curves, which calls for further re- By means of simulations we showed that the tracking per-
search. formance depends strongly on the inclusion of the feedfor-
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ward paths in a realistic control task. That is, the perforoga do achieve a higher magnitude slope than a single diffexenti

of the model including both roll and lateral feedforward istor and have a clearly more positive phase response than the
one order of magnitude better than the purely feedback modeurely feedback model. This suggests that our proposes-tran
Although the absolute performance of the model depends der functions for the feedforward terms are not perfect. &é&e s
the chosen numerical values of the model parameters, i is ithis as an additional motivation for further research ingt-h
teresting to note that the best performance of all subjects copter pilot modeling by means of physiologically validaail

the experiment was clearly better than the modeled pure feetiodels and human-in-the-loop experiments.

back performance. Obviously, a comparison based on a sin- 1 put this study into the proper perspective, it is impor-

gle performance metric is not conclusive for the underlyingynt 1 note that several modifications of the original ADS-3
pilot behavior, but it does support our motivation to iN¥est |4tera| reposition task had to be made in order to measure the
gate feedforward behavior in the human pilot. That is, if &6t control dynamics. The most radical modification isttha
simulated pilot model is used early in the design process {fe a5k was changed from a ‘free’ control task into a tragkin
predict the performance level of the helicopter |t_|s impatt task, exactly prescribing the lateral position of the ragiter
that the model does not grossly over or underestimate the PBiroughout the entire maneuver. The ADS-33 specifies the
formance. lateral reposition task by prescribing the amount of distan
Our second objective was to identify the hypothesizethat needs to be covered by lateral motion within a certain
feedforward control behavior during a human-in-the-logp e time. Theoretically, the maneuver can be flown in many dif-
periment. We found that it is impossible to directly ideyntif ferentways, but taking into account the stringent longitatj
the hypothesized feedforward behavior. Because the pilot Vertical and heading motion requirements the amount of ‘ac-
able to control on a large amount of input signals seven diteptable’ maneuver trajectories is strongly reduced. &at
ferent control responses are to be identified; two of them ai@ practice the pilot will attempt to keep the helicopteririt
feedforward elements. Direct identification would requine  a narrow range of anmaginary reference trajectory for which
to measure the commanded roll signal, which is a signal all requirements are met at the same time. Therefore, the
‘internal’ to the pilot and can therefore not be measured.  tracking task is probably similar, but not exactly the sarme a
}he original task and small differences in control behaxiay

Ref. 5 solved this problem by additionally presenting a roIStiII be expected.

target signal that corresponded to the presented lategmtta
signal f; and assuming this additional signal to be identical to Additionally, the dynamics of the helicopter were simpli-
the internal roll command. This assumption, however, onlfied to simple linear transfer functions neglecting, amongs
holds in cases where there are no disturbances on the roll nfhers, coupling and drag effects. Especially the roll dyica
tion and the pilot makes no control errors. As soon as distuyere simplified considerably to make the task easier. The rol
bances or errors are introduced, the pilot will have to decidgdynamics were a single integrator, where more realistitstra
between tracking the roll angle needed to correct for laterfer function models also consider the unstable lateral pitlig

errors and tracking the explicitly presented roll target. lateral sway damping and roll damping (Ref. 23). The more
complex dynamics would require the pilot to also generate

Sad at higher frequencies in the roll loop and continuously
‘Rabilize the unstable lateral phugoid, which would notyonl
make the task more difficult but would also affect the identifi
Eation problem.

In this paper we took a different approach and made u
of the fact that the error feedback and feedforward dynami
can be estimated in a ‘lumped’ form, designatgde,, reduc-
ing the amount of unknown control elements to five, being th
roll and lateral feedforward elements, the roll and lateredr
feedback elements and the neuromuscular system dynamics.Based on the presented results and our experience with this
Then, by making assumptions on the content of three of tho§&periment we provide the following recommendations fer fu
control elements based on control theory, human physiolodlyre research.
and previous experiments, evidence for feedforward behav- First, it is important to better understand the assumptions
ior can be collected. More precisely, the dynamics of theter concerning the error feedback elements that need to be made
Y.+, Would contain at most one differentiator and have a zer@ obtain evidence of feedforward behavior and to validate
or negative phase in case of predominantly feedback behavithem by means of human-in-the-loop experiments. This vali-
Estimated dynamics off, ¢, containing a steeper magnitudedation should preferably be done simultaneously to the-feed
slope than one differentiator and a mostly positive phase réorward identification, because due to the adaptive natfire o
sponse would point in the direction of feedforward cont@l b the human it is difficult to assume certain control dynamics
havior. Tests by means of model simulations confirmed thi® remain constant across different control tasks and exper
approach to be feasible, after which a human-in-the-loep exnents.

periment was performed. Furthermore, our current approach was to qualitatively

The Y, +¢, dynamics measured from human subjects coreompare the overall ‘shape’ of the measuvgde, dynamics
tain characteristics similar to thé, ;¢, curves obtained from to the shape of th¥j, ¢ dynamics of the models. It would
the pilot model containing feedforward, although not ade more objective to define a metric by which these dynam-
clearly as one might expect. That is, the measured curves can be compared quantitatively and to investigate which
are certainly not a perfect fit to the feedforward model, butnodel parameters affect the similarity in particular.
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Finally, it is important to investigate how the way the task 6McRuer, D. T. and Jex, H. R., “A Review of Quasi-Linear

is defined and presented to the pilots affect their behalrior. pilot Models,”| EEE Trans. on Human Factorsin Electronics,
this study the task was presented as a tracking task in avdenjo|. HFE-8, (3), 1967, pp. 231-249.

make use of validated system identification methods, bat thi

does not exactly represent the ADS-33 certification task. ~ 'Hess, R. A., “Structural Model of the Adaptive Human Pi-
lot,” Journal of Guidance, Control, and Dynamics, Vol. 3, (5),
CONCLUSIONS 1980, pp. 416-423.

This paper investigated helicopter pilot control behawioa 8Kleinman, D. L., Baron, S., and Levison, W. H., “An opti-
tracking task resembling an ADS-33 lateral reposition tasknal control model of human response part I: Theory and val-
Based on control theoretical concepts and knowledge of higation,” Automatica, Vol. 6, (3), May 1970, pp. 357-369.
man physiology and perception, we hypothesized that the in- .
clusion of an inverse system dynamics feedforward path is’Whalley, M. S., “Development and Evaluation of an In-
necessary to obtain an accurate prediction of helicopter pe/erse Solution Technique for Studying Helicopter Maneuver
formance. From simulations we conclude that the perfo@bility and Agility,” NASA Technical Memorandum 102889,
mance of the pilot-helicopter system is one order of magnNASA Ames Research Center, Moffett Field (CA), July 1991.
tude better for a pilot model that includes feedforward ac-;
tion than for a pure feedback pilot model. It was found thailo
the feedforward control dynamics can not be identified frorlg
experimental data directly, but that indirect evidecaa be
collected for the existence of feedforward action, by mgkin 11cameron, N., Thomson, D. G., and Murray-Smith,
reasonable assumptions on the feedback control behawer. i 3., “Pilot modelling and inverse simulation for initial
sults from a human-in-the-loop experiment in which foursubhandling qualities assessmenfThe Aeronautical Journal,
jects performed the lateral reposition task suggest ecilenyp|. 107, (1074), 2003, pp. 511-520.
for the conclusion that the human pilot utilizes feedfordvar
strategies, but does not result in a complete pilot model fot?Anon., “Aeronautical Design Standard ADS-33-E. Han-
this task. dling qualities requirements for military rotorcraft.” dleni-
cal report, United States Army Aviation and Missile Com-
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