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Abstract. Flight simulators are often assessed in terms of how well
they imitate the physical reality that they endeavor to recreate. Given
that vehicle simulators are primarily used for training purposes, it is
equally important to consider the implications of visualization in terms
of its influence on the user’s control performance. In this paper, we report
that a complex and realistic visual world environment can result in larger
performance errors compared to a simplified, yet equivalent, visualization
of the same control task. This is accompanied by an increase in subjective
workload. A detailed analysis of control performance indicates that this is
because the error perception is more variable in a real world environment.

1 Introduction

We rely on visual feedback to ensure stable motion and collision avoidance dur-
ing self-motion. Visual feedback informs the human operator of the immediate
difference between his desired goal and the consequences of his action. Thus,
subsequent actions can be planned to minimize this difference. For that reason,
it is important to ask how error feedback should be visualized to support good
control performance in the human operator.

The real world is a rich source of visual information for supporting the con-
trol of self-motion. For example, the rate and the focus of expansion in retinal
image changes (i.e., optic flow) can respectively help us discern our velocity
and heading direction [1, 2]. Given this, it is not surprising that virtual envi-
ronments often strive to achieve high visual realism. This is especially true for
flight simulators that are designed to train control performance, the success of
which is subsequently vital for safety in a real vehicle. Several studies support
this ambition. It has been shown in a flight simulator study that increasing the
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realism of ground terrain results in more accurate judgments in altitude as well
as improved aiming [3]. Similarly, the altitude perception in pilots improved with
higher object density in the visual environment [4].

Nonetheless, this strive towards high visual fidelity may not always be neces-
sary nor helpful. For example, it has been shown in a disturbance tracking task
that a simple instrument can better support the control performance of human
operator than optic flow alone [5]. Similarly, a driving simulator study demon-
strated that control performance is independent of whether a realistic view of
the road or just the lane itself is presented [6]. Given these findings, it stands to
reason that if all information necessary to complete a task could be condensed
in a simple instrument, it might be possible to achieve similar performance as
in a real-world environment. In fact, one might even expect better performance
from a simple visualization that exclusively presents only the information that
is necessary for performing a given task. This relieves the operator from parsing
the environment for task relevant information.

To investigate whether or not control performance is dependent on the re-
alism of the visualization, the present study evaluated human participants on a
closed-loop control task in a high-fidelity, fixed-base flight simulator. The struc-
ture of the task is depicted in Figure 1. The reference signal ft(t) represents the
target to be followed. This reference signal was an unpredictable change in the
roll angle of the simulated vehicle. This was not directly shown to the Human
Operator. Instead, only the difference e(t) between the desired roll angle ft(t)
and the output of the system ϕ(t) was displayed. In performing this task, the
Human Operator has to continuously perceive his deviation from the target and
to manually operate a control device to minimize this perceived error.

Figure 1. Closed-loop control task of the presented study. The difference e(t) between
the output of the system ϕ(t) and the unpredictable reference input ft(t) was presented
in two different ways. Either using a simplified instrumental view (Instrument) or a
complex visualization showing the outside view of an helicopter (Outside View). The
human operators’ task was to compensate for the disturbance introduced through the
reference signal.



In our implementation of this control scheme, the Human Operator moved
a control stick to continuously compensate for the displayed error. Moving the
stick to the left or right resulted in stick deflections that were proportional to
the roll rate ϕ̇(t) of the simulated aircraft. Thus, stick manipulations served as
a direct input u(t) to a Controlled System with single-integrator dynamics. The
output of the system was fed back and subtracted from the reference signal ft(t),
resulting in the error e(t) that was shown to the Human Operator.

As mentioned, there were the two possible visualizations for presenting this
error feedback e(t) to the Human Operator. This allowed us to investigate the in-
fluence of visualization complexity and was the only experimental manipulation
in the current study. It is worth mentioning again that the reference signal ft(t)
was the same regardless of the visualization. In other words, the task difficulty
was the same regardless of the visualization shown. The Instrument visualization
was comparable to an attitude indicator (commonly referred to as an artificial
horizon), which is an aviation instrument that displays the aircraft’s angular po-
sition with respect to the horizon (Figure 2). For the Outside View visualization,
participants were presented with a view of a simulated real-world environment
from an aircraft cockpit (Figure 3).

In the current study, we were interested in how the visualization of error
feedback affected control performance. In addition, we were also motivated to
know whether this influence of visualization would be accompanied by changes
in subjective workload. To measure control performance, the output of the joy-
stick u(t) as well as the error e(t) were recorded. e(t) was the amount of error
that remained in the system after the Human Operator resolved the continu-
ous disturbance ft(t) to the system. Therefore, this value served as a basis for
evaluating control performance. u(t) was the amount of control input that the
Human Operator submitted to the Controlled System. This was treated as a mea-
sure for control effort. To assess subjective workload, we requested participants
to complete a computerized version of the NASA Task Load Index (NASA-TLX)
questionnaire [7] after each given visualization.

2 Methods

2.1 Participants

Twelve participants (eight male), were recruited from the participant database
of the Max-Planck Institute. They were aged between 21–37 years (mean: 29.1
years) and had normal or corrected-to-normal vision. All were right handed.
They gave their written consent before the experiment and were paid 12 Euros
per hour.

2.2 Apparatus and Flight Model

The current study was conducted in a fixed-based flight simulator that consisted
of a main PC and display cluster. The main PC controlled the experiment and



data collection with a customized software based on Matlab Simulink (Math-
works). This PC was connected to a cluster of nine independent visualization
PCs, via a local area network and commanded the timing and presentation of
the visualization using UDP triggers.

Figure 2. Instrument condition, showing an artificial horizon. The error e(t) is calcu-
lated from the reference signal ft(t) and the roll angle ϕ(t).

The visualization PCs were connected to a large display that consisted of
nine panels (total field-of-view: 105◦ x 100◦). In the Instrument condition, two
lines were rendered on a blue background with Matlab Psychtoolbox, a black
line that represented e(t) and a white horizontal line that represented zero er-
ror [8, 9] (Figure2). The Outside View condition used flight simulation software
(i.e., FlightGear; [10]) to present a cockpit view of a straight-ahead flight path,
through the hinterlands of San Francisco, wherein e(t) resulted in rotations of
the cockpit’s view frustum and, hence, the entire scene (see Figure 3).

Inputs to the Controlled System were submitted via a joystick (Extreme 3D
Pro, Logitech) that sampled at 256Hz. This only affected the roll angle of the
visualization. The other degrees of freedom of the Controlled System were fixed.

A computerized NASA-TLX questionnaire was presented to the participants
for the self-reporting of subjective workload via a laptop computer. This rating
scale consists of six sub-scales (Mental Demand, Physical Demand, Temporal
Demand, Performance, Effort, Frustration) [7].

2.3 Compensatory Tracking Task

In a compensatory tracking task, the participants needs to minimize the error
between a target signal and the output of the system. In the current study, a
disturbance ft(t) is continuously introduced into the system, which exclusively
perturbs the roll angle of the Controlled System. Here, ft(t) was designed as
quasi-random reference signal that consisted of a sum of 10 sine waves. These
comprising sine waves were non-harmonically related. The disturbance function
had a variance of 1.7 deg2. More specifically we used the following function [11]:



Figure 3. Fixed-base flight simulator, consisting of nine panels and a field-of-view of
105◦ x 100◦. Here the Outside View is shown. During the experiment, visual distur-
bances were experienced in the roll-axis around the horizon, that our participants were
instructed to compensate for with the provided joystick

ft(t) =

N∑
j=1

A(j)sin(ω(j) · t+ φ(j)) (1)

The amplitude, frequency and phase of the sinusoids are given in Table 1.

j Aj in deg ωj in rad/s φj in rad

1 1.351 0.377 0.145
2 1.007 0.859 0.902
3 0.509 1.759 4.306
4 0.260 2.827 6.127
5 0.157 3.917 5.339
6 0.095 5.466 6.155
7 0.060 7.749 1.503
8 0.043 10.514 1.506
9 0.036 13.132 2.368
10 0.030 17.363 2.086

Table 1. Values of the ten non-harmonically related sine waves of the target signal
ft(t). With number of the sine wave j, the amplitude of the jth sine wave equals Aj ,
the frequency is ωj and the phase is φj

.



2.4 Procedure

Two sessions comprised the full experiment and were conducted on separate
days. Two blocks were performed in each session and each block presented one
of the two possible visualizations (Instrument, Outside View). Three 5 mins
trials were presented per block, with 5 mins breaks between them. The order of
the blocks was counter-balanced for the visualization condition across sessions
and participants.

Each session began with the participant reading and signing a consent form
that provided experimental instructions. The computerized NASA-TLX ques-
tionnaire was administered after the completion of each block of trials for the
given visualization condition. Altogether, the experiment took 3.5 hours for every
participant over the two sessions.

2.5 Data collection and analysis

To evaluate the performance, the normalized root mean squared value of the
error signal e(t) (nRMSerror) was calculated, as well as the root mean squared
value of the control input u(t) (RMSinput). The nRMSerror was normalized
with the disturbance that was experimentally introduced to the system. Thus, a
nRMSerror that is smaller than a value of 1 would indicate that our participants
reduced the disturbance in the system, while a value that was larger than 1
would indicate that the participant introduced additional disturbances to the
system. The nRMSerror can be further divided into the mean and variable error
as follows:

nRMSerror =
√
MeanError2 + V ariableError2 (2)

whereby MeanError is simply defined over all measured time points i as,

MeanError =

N∑
i=1

ei

N
(3)

and V ariableError as,

V ariableError =

√√√√√ N∑
i=1

(MeanError − ei)2

N
(4)

The mean error represents the distance of the mean of the error distribution
from zero (i.e. the target) and the variable error represents the spread of the
error distribution [12].

The RMSinput represents the control effort of the participants. A higher
RMSinput indicates that the participants submitted more joystick input into
the Controlled System.

These measures for control performance, control effort and subjective work-
load were submitted to a paired-sample t-test to test for statistical differences.
An alpha-level of 0.05 was adopted as the criterion for significance.



3 Results and Discussion

Figure 4A shows that the Outside View visualization resulted in a larger
nRMSerror than the Instrument visualization (t(11)=-6.54, p < 0.05). In fact,
all of our participants had nRMSerror values that were larger than 1 when the
Outside View visualization was presented. This means that their efforts to min-
imize error actually led to additional disturbances in the control system. It is
necessary to point out that this was not due to the difficulty of the compensatory
control task per se. When presented with the Instrument visualization, all par-
ticipants were able to achieve nRMSerror values that were lower than 1. This
result highlights the critical influence of visualization on control performance.

Figure 4. Box-plots for the measures of nRMSerror (A), mean error (B) and variable
error (C) across the condition of Visualization. Each box-plot shows the median, the
interquartile range and data range. Outliers are represented as red crosses.

There are several explanations for this large difference in nRMSerror. First,
our participants have failed to accurately estimate the desired goal from the Out-
side View visualization. Namely, the ideal attitude. If so, we would expect our
participants’ error distribution to be shifted away from the zero value, resulting
in a bigger bias (e.g. mean error). Next, our participants could have been unable
to accurately estimate the error from the Outside View visualization. If this was
true, we would expect a high variable error. Figures 4B and 4C show that the
mean error and the variable error were both larger for the Outside View com-
pared to the Instrument condition (Mean Error: t(11)=-5.77, p < 0.05; Variable
Error: t(11)=-6.02, p < 0.05). Therefore, our participants were less certain about
the ideal state and were less precise in their control when they were presented
with an Outside View visualization.

A time trace of the control error for both conditions ( Figure 5) shows these
two differences between the conditions. In the simple Instrument condition (light
gray), the control error varied around the target with smaller mean and variable



error. In the Outside View condition (black) the mean error is shifted over time
with larger fluctuations around it.

Figure 5. Control error over time for the Outside View (light gray) and Instrument
(black) condition. The data was filtered using a moving average filter with a window
size of 40 seconds. In the Instrument condition the error varied around the target while
in the Outside View condition, the mean of the error distribution is shifted over time.

In addition, the Instrument condition resulted in more input activity than
the Outside View condition (t(11)=5.59, p < 0.05; see Figure 6). This indicates
that the Instrument visualization induced our participants to invest more con-
trol effort into the task than for the Outside View visualization. This could be
because error was better perceived from the Instrument visualization, resulting
in more and better targeted control input. Conversely, participants could have
submitted less control input in the Outside View visualization because they did
not perceive the need for it.

Subjective workload, as measured by the NASA-TLX scores, did not differ
across the visualization condition (t(11)=2.07, p = 0.07). This supports our ear-
lier conclusion. Although the participants did not perceive a difference in the
difficulty of the same task across the different visualizations, the difference in
their ability to accurately perceive their error resulted in very different control
performance. The NASA-TLX scores indicate that mental demand (23%), per-
formance (29%) and effort (23%) comprised more than 70% of the perceived
workload in our task.

These findings show that control performance is better supported by a visu-
alization that explicitly present the information that is required for the control
task. In the current experiment, an explicit representation of the error supported
the Human Operator in submitted the appropriate control inputs, without in-
creasing his perceived workload. Unfortunately, competence in a complex control
task such as piloting an aircraft with many degrees of freedom for a large reper-
toire of possible maneuvers often depend on multiple sources of information. It
may not be feasible to create dedicated instruments for every relevant informa-
tion channel. In this regard, the outside world might represent a more general



Figure 6.Box-plots for RMSinput across the condition of Visualization. Each box-plot
shows the median, the interquartile range and data range.

and effective source of information than spreading one’s visual attention across
multiple instruments. This warrants further investigation.

In conclusion, the visualization of the error feedback can result in different
levels of performance for two experimental conditions that are equivalent in terms
of their difficulty and perceived workload. A simple visualization might lack the
qualities of physical realism, but explicitly represents the primary property that
is of interest to the human operator. This has the advantage of preventing the
occurrence of unintended biases in error perception.
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