
Motion- and Uncertainty-aware Path Planning for Micro
Aerial Vehicles*

• •

Markus W. Achtelik and Simon Lynen
Autonomous Systems Lab, ETH Zurich, CH-8092 Zurich, Switzerland
e-mail: markus.achtelik@mavt.ethz.ch, simon.lynen@mavt.ethz.ch
Stephan Weiss
Computer Vision Group, NASA Jet Propulsion Laboratory/California Institute of Technology, Pasadena, California 91109
e-mail: stephan.weiss@ieee.org
Margarita Chli
Vision for Robotics Lab, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, United Kingdom
e-mail: mchli@inf.ed.ac.uk
Roland Siegwart
ETH Zurich, CH-8092 Zurich, Switzerland
e-mail: r.siegwart@ieee.org

Received 5 July 2013; accepted 6 March 2014

Localization and state estimation are reaching a certain maturity in mobile robotics, often providing both
a precise robot pose estimate at a point in time and the corresponding uncertainty. In the bid to increase the
robots’ autonomy, the community now turns to more advanced tasks, such as navigation and path planning. For
a realistic path to be computed, neither the uncertainty of the robot’s perception nor the vehicle’s dynamics can
be ignored. In this work, we propose to specifically exploit the information on uncertainty, while also accounting
for the physical laws governing the motion of the vehicle. Making use of rapidly exploring random belief trees,
here we evaluate offline multiple path hypotheses in a known map to select a path exhibiting the motion
required to estimate the robot’s state accurately and, inherently, to avoid motion in modes, where otherwise
observable states are not excited. We demonstrate the proposed approach on a micro aerial vehicle performing
visual-inertial navigation. Such a system is known to require sufficient excitation to reach full observability. As
a result, the proposed methodology plans safe avoidance not only of obstacles, but also areas where localization
might fail during real flights compensating for the limitations of the localization methodology available. We
show that our planner actively improves the precision of the state estimation by selecting paths that minimize
the uncertainty in the estimated states. Furthermore, our experiments illustrate by comparison that a naive
planner would fail to reach the goal within bounded uncertainty in most cases. C© 2014 Wiley Periodicals, Inc.

1. INTRODUCTION

Driven by the need for mobile robots that are applicable in
real tasks, research in spatial awareness and motion control
has experienced great leaps over the past few years. It was
not so long ago when simultaneous localization and map-
ping (SLAM) was shown to be possible with a single hand-
held camera by Davison, Molton, Reid, and Stasse (2007).
Most recently, a micro aerial vehicle (MAV) was demon-
strated to perform SLAM onboard, solely using visual and
inertial cues (Weiss, Achtelik, Chli, & Siegwart, 2012). How-

∗The research leading to these results has received funding
from the European Community’s Seventh Framework Programme
(FP7) under grant agreements n.266470 (myCopter) and n.600958
(SHERPA).

ever, we are still missing essential functionality before a
robot can carry out real missions autonomously from start to
finish. With current research pushing for added autonomy,
realistic path planning and obstacle avoidance are certainly
at the top of the priorities list.

With the seminal works of Kavraki, Švestka, Latombe,
and Overmars (1996) and Kuffner and LaValle (2000) paving
the way for random-sampling-based path planners, the
question arising is how to employ such methods within
the navigation pipeline running onboard the mobile robot.
While path planning has long been studied on ground ve-
hicles, approaches dealing with MAV navigation in three
dimensions are rather sparse. Perhaps this can be attributed
to the fact that it is only very recently that sufficiently robust
systems, able to perform simple maneuvers and estimate
their motion, have started appearing (Fraundorfer et al.,

Journal of Field Robotics 31(4), 676–698 (2014) C© 2014 Wiley Periodicals, Inc.
View this article online at wileyonlinelibrary.com • DOI: 10.1002/rob.21522

Achtelik et al.: Motion and Uncertainty Aware Path Planning • 677

2012; Shen, Michael, & Kumar, 2011; Weiss et al., 2013). In
this work, we choose to address path planning for MAVs,
which is one of the most challenging navigation scenarios
given both their high agility and the significance of prompt
and sound state estimates to avoid crashes.

1.1. Path Planning for MAVs

In the context of MAV path planning, He, Prentice, and Roy
(2008) proposed one of the first approaches applicable to a
quad-rotor helicopter. Their method is based on sampling
in information space, albeit ignoring the vehicle dynamics
in the path generation. Similarly, in Prentice & Roy (2009),
dynamics were also excluded from the sampling space, but
the vehicle pose uncertainty has been taken into account.
Using a laser-generated map, Wzorek, Kvarnström, and
Doherty (2010) proposed using a list of predefined possi-
ble plan strategies to select from at run time, employing a
machine-learning approach.

Sacrificing a global minimum, Richter, Bry, and Roy
(2013) presented an effective and fast method to compute
dynamic trajectories for a MAV. They furthermore refor-
mulated the trajectory optimization method proposed by
Mellinger and Kumar (2011) to an unconstrained problem.
This allows for a higher number of path segments and im-
proves numerical stability for the high-order polynomials
commonly used to represent path segments. Planning to-
ward optimal paths and the formation of multiple hetero-
geneous MAVs was demonstrated by Mellinger, Kushleyev,
& Kumar (2012), while goal assignment for large teams of
MAVs was demonstrated by Turpin, Mohta, Michael, & Ku-
mar (2013).

Probably the most high-performing system to date is
the very recent SPARTAN (Cover, Choudhury, Scherer, &
Singh, 2013), demonstrating online obstacle perception and
avoidance using a lidar and a stereo camera onboard a
MAV. This method was shown to be able to handle both
dense environments and free spaces. Finally, a very inter-
esting concept was demonstrated by Choudhury, Scherer,
& Singh (2013): using a rapidly-exploring random tree ap-
proach with guaranteed asymptotic optimality (RRT*) plan-
ner (Karaman & Frazzoli, 2010), feasible routes are gener-
ated and provided to a human operator in case of engine
malfunctions to reach possible emergency landing sites.
However, in contrast to all of the aforementioned works, the
thesis of this work is that both vehicle dynamics and pose
uncertainty need to be taken into account in path-planning
estimation in order to have a truly generic application of the
system in a variety of scenarios.

1.2. State Estimation Considerations in the Loop
of Path Planning

In the past, the focus of accurate state estimation has been
on the controlled states, such as the 6 DoF (degrees of free-

dom) pose and the 3 DoF velocity of the vehicle. How-
ever, with the recent emergence of self-calibrating power-
on-and-go-systems (Kelly & Sukhatme, 2011; Weiss, 2012), it
has become increasingly important to ensure fast state con-
vergence at the beginning of the vehicle’s motion (or right
after reinitialization during the mission). Moreover, for self-
calibrating systems, it is crucial to continuously excite the
system in such a way that the calibrating states [e.g., biases
of the inertial measurement unit (IMU), the visual scale, the
transformation between sensors] are accurately estimated
throughout the whole mission.

The studies (Achtelik, Achtelik, Weiss, & Siegwart,
2011; Weiss, 2012) on MAV navigation provide approaches
for localization of the vehicle through continuous observa-
tion of visual landmarks. Thus, in such scenarios all regions
are equally preferred during planning in terms of availabil-
ity of measurements. The sparsity and availability of land-
marks has given rise to special planning algorithms favor-
ing areas with more reliable landmarks in the area between
the start and goal positions (Bryson, Johnson-Roberson, &
Sukkarieh, 2009; He, Prentice, & Roy, 2008; Prentice & Roy,
2009; Roy & Thrun, 1999). However, power-on-and-go sys-
tems usually have two additional requirements. First, as
shown by Kelly & Sukhatme (2011) and Weiss & Siegwart
(2011), these systems need excitation in linear acceleration
and angular velocity before all states become observable.
This is particularly true for systems estimating their inter-
sensor calibration, in addition to the vehicle pose used for
control. In hovering mode or while flying on a straight path,
a MAV system remains in an unobservable mode prevent-
ing correct estimation of all the system states. Secondly, for
single-camera systems, if a loss of the visual map occurs
(which cannot be ruled out during a real mission), reinitial-
ization of the system has to be performed. After such a reini-
tialization, the metric scale has to be reestimated quickly to
allow continuous and robust vehicle control.1 Our work
aims to provide robustness against such cases in which typ-
ical planners would fail to produce a feasible path: We seek
to find not only a short path to the destination, but a path
along which the states estimated in our system are best ob-
servable at all times. Figure 1 illustrates an example path
generated by our method, which aims to reduce the posi-
tion uncertainty of the vehicle at the goal location, with the
additional constraint of reaching the target within the given
confidence area.

In this work, we study the problem of not just acquir-
ing any measurement, but in fact acquiring an informative
measurement, such that the vehicle always remains in a
fully observable mode. Using our previous work (Achtelik,
Weiss, Chli, & Siegwart, 2013b) as a basis, we employ the
rapidly exploring random belief tree (RRBT) approach (Bry

1Monocular systems measure the three-dimensional position only
up to an arbitrary scale.

Journal of Field Robotics DOI 10.1002/rob

678 • Journal of Field Robotics—2014

Figure 1. The path planned by the proposed method to navigate in a medium-sized outdoor area from the start (on the right) to the
goal (left). The dark green dots denote visual landmarks, and the red ellipsoids denote the uncertainty of intermediate points that
the planner has considered during the optimization phase. Control input velocities (cyan) and accelerations (yellow) are computed
that minimize the localization covariance. With this methodology, the planner is hence able to avoid flying over areas that do not
allow accurate localization while assuring sufficient motion to render all states of our system observable

& Roy, 2011) to plan and follow a path for a MAV on the fly,
from the current position to a user- or application-defined
destination. We choose to employ RRBT since it can handle
both dynamic constraints and uncertainty. It is important to
note that in order to produce realistic paths for the MAV, the
same navigation pipeline is used within the planning phase
as the one used by the MAV. This navigation framework
was introduced by Weiss & Siegwart (2011) and Weiss et al.
(2012) and is used to acquire a map of the MAV’s workspace
to serve as a basis for the planning and navigation phase.
Monitoring the uncertainty in 24 states, the proposed sys-
tem can plan a collision-free path (avoiding static obsta-
cles) incorporating the vehicle’s controller dynamics, while
being able to cope with nonholonomic constraints of the
vehicle.

Exploring the power of the RRBT framework within
MAV navigation, we demonstrate how effective path plan-
ning can not only reduce the error and uncertainty of the
state estimates, but also allow for faster convergence of
states initialized far off their true values. Studying this par-
ticularly challenging navigation scenario, we aim to high-
light the influence of path planning in the overall robust-
ness of navigation when used in the loop of the estimation
process.

The remainder of the paper is organized as follows: We
begin with a description of the MAV navigation framework
and the helicopter model used in this work in Section 2,
followed by the definition of the problem statement and
the assumptions we make in Section 3. Our problem for-
mulation for the RRBT path planner and the realization for
the MAV navigation scenario are discussed in Section 4.
With the description of the experimental setup in Section
5, we present and analyze the behavior of the method via
simulated and real-world experimentation and field tests in
Section 6, before drawing conclusions in Section 7.

2. SYSTEM DESCRIPTION

In this section, we provide a brief overview of our frame-
work for MAV navigation as well as the helicopter model,
both of which are used later within the path-planning ap-
proach. It should be noted that all the systems described
here have been tested and verified in various field exper-
iments. Throughout this article, the term state has the fol-
lowing three different aspects:

� filter state xf : refers to the state used in the estimation
processes using the extended Kalman filter (EKF) as de-
scribed in Section 2.1. This comprises the vehicle pose
and velocity used for control, as well as the (inter)sensor
calibration parameters.

� system state xd : refers to the state used to describe the
vehicle dynamics. The pose of the system and its deriva-
tives are of interest in order to grant smooth motion (see
Section 2.2).

� sampling state xs : refers to the state in the space from
which we take samples in order to obtain new state ver-
tices in the RRBT graph structure (see Section 4.3).

2.1. Visual-inertial State Estimation for a MAV

In the following, we consider the case of vision-based nav-
igation for MAVs using a single camera and an IMU as
the only sensors. We use the keyframe-based monocular vi-
sual SLAM framework PTAM (Klein & Murray, 2007) for
localization, which we adapted to the requirements of MAV
navigation (Weiss et al., 2013). For the system state estima-
tion, we use an EKF approach according to our previous
work in Lynen et al. (2013), Weiss & Siegwart (2011), and
Weiss et al. (2012). For completeness, we briefly summarize
the essentials.

Journal of Field Robotics DOI 10.1002/rob

Achtelik et al.: Motion and Uncertainty Aware Path Planning • 679

Figure 2. Setup depicting the IMU centered robot body with
its sensors with respect to a world reference frame. The state is
xf = [

pi
w vi

w q̄i
w bω ba λ ps

i q̄s
i

]
, whereas ps

w and q̄s
w

denote the robot’s sensor measurements of (a possibly scaled)
position and attitude, respectively, expressed in the world
frame of reference

The state of the filter is composed of the position of the
IMU pi

w in the world frame, its velocity vi
w , and its attitude

quaternion q̄ i
w describing a rotation from the world to the

IMU frame. We also add the gyro and acceleration biases
bω and ba . Since we use a monocular vision approach for
localization, the position part of the pose measurement is
arbitrarily scaled. Given sufficient motion, this visual scal-
ing factor λ is observable (Kelly & Sukhatme, 2011; Weiss,
2012). This scaling factor is set to an arbitrary value at ini-
tialization of the SLAM system. However, the scaling factor
drifts slightly during motion of the camera. Therefore, we
add it to the state in order to be estimated continuously on-
line. When fusing camera data with IMU data, knowledge
of their extrinsic calibration is essential in order to map vi-
sual measurements into the IMU frame. Therefore, we add
calibration states, namely the rotation from the IMU frame
to the camera sensor frame q̄s

i and the distance between
these two sensors, ps

i . How these states relate to each other
can be seen in Figure 2. This setup yields a 24-element filter
state vector xf :

xf =
[

pi
w

T
vi

w

T
q̄i

w

T
bT

ω bT
a λ ps

i
T q̄s

i
T
]T

(1)

The following differential equations govern the state:

ṗi
w = vi

w, (2)

v̇i
w = C(q̄ i

w) · (am − ba − na) − g, (3)

˙̄qi

w = 1
2
� · (ωm − bω − nω) · q̄ i

w, (4)

ḃω = nbω , (5)

ḃa = nba , (6)

ḃω = nbω ḃa = nba λ̇ = 0 ṗs
i = 0 ˙̄qs

i = 0, (7)

where g is the gravity vector in the world frame and �(ω) is
the quaternion multiplication matrix of ω. am and ωm denote
the linear accelerations and angular velocities measured by
the IMU, while na, nba , nω, nbω denote zero mean white
Gaussian noise. We assume the scale drifts spatially and not
temporally, thus λ̇ = 0.

For the possibly scaled camera position measurement
ps

w obtained from the visual SLAM algorithm, we have the
following measurement model, with C(q̄ i

w) denoting the ro-
tation matrix of the IMU’s attitude in the world frame:

zp = ps
w = [pi

w + C(q̄ i
w) · ps

i] · λ + np. (8)

For the rotation measurement, we apply the notion of
an error quaternion. The vision algorithm yields the rotation
from the world frame to the camera frame qs

w . We can model
this as

zq = q̄s
w = q̄ i

w ⊗ q̄s
i ⊗ δq̄n. (9)

A nonlinear observability analysis, as suggested by
Hermann & Krener (1977) and done in Kelly & Sukhatme
(2011); Weiss (2012), reveals that all states are observable, in-
cluding the intersensor calibration states ps

i (distance from
the IMU to the sensor) and q̄s

i (rotation from the IMU to
the sensor). This is true as long as the vehicle excites the
IMU’s accelerometer and gyroscopes in at least two axes, as
proven in Kelly & Sukhatme (2011) and Mirzaei & Roume-
liotis (2008).

2.2. Helicopter Model

To plan the motion of a MAV while ensuring that all states
of the aforementioned state estimation filter stay observ-
able, we will have to execute (i.e., propagate forward) this
filter along candidate optimized paths. Besides visual mea-
surements (ps

w , q̄s
w), we need to generate the system inputs

for the filter in Eqs. (3) and (6), namely acceleration and
the angular velocity, both in body-fixed coordinates. Fur-
thermore, we aim to keep the helicopter model generic for
quad- or in general multicopter MAVs, such as the hexa-
copter we used for the experiments in Weiss et al. (2012).
Therefore, we define the thrust in terms of acceleration in
the z axis of the helicopter, and the body fixed angular ve-
locity ω as control inputs for the multicopter system. We
assume that there exists a low-level controller that maps the
individual rotor speeds to angular velocities. Thus, we do
not have to care about vehicle-specific details, such as rotor
count/alignment or moments of inertia. Since there is an
underlying controller for ω, we require a demanded control
input to be continuous and differentiable.

To plan appropriate paths for the MAV, we need to
consider the capabilities of the helicopter given the afore-
mentioned constraints. The findings of Mellinger and Ku-
mar (2011) regarding the differentially flat outputs [x y z ψ]
(i.e., position and yaw) for a quadrotor can be applied to this
problem: given a function for the position of the center of

Journal of Field Robotics DOI 10.1002/rob

680 • Journal of Field Robotics—2014

mass of the helicopter and its orientation (yaw), which are
sufficiently differentiable, we can always compute the re-
maining states we need for the helicopter (roll/pitch part
of the attitude) and the required control inputs angular ve-
locity ω and thrust |t|. The latter is simply a function of
the attitude and rotor speeds. We assume that the IMU is
aligned with the center of gravity of the helicopter. Accord-
ing to Mellinger & Kumar (2011), the full attitude q̄ i

w can be
computed as follows:

zi = t
|t| , t = a + [

0 0 g
]T

, (10)

yi = zi × x 0̄

|zi × x 0̄|
, x 0̄ = [

cos(ψ) sin(ψ) 0
]T

, (11)

xi = yi × zi , (12)

⇒ q̄ i
w = q̄(C i

w), C i
w = [

xi yi zi

]
, (13)

where a denotes the acceleration and ψ is the yaw angle of
the helicopter. The thrust vector t defines the direction of the
unit vector zB of a body-fixed coordinate system [xi yi zi].
This can also be seen as the rotation matrix C i

w that describes
the orientation of the helicopter (IMU) with respect to the
world coordinate system. ω computes as follows (Achtelik,
Lynen, Chli, & Siegwart, 2013a; Mellinger & Kumar, 2011):

ωx = − jT · yi · |t|−1, (14)

ωy = jT · xi · |t|−1, (15)

ωz = ψ̇ · zT
w · zi , (16)

where j denotes the jerk, i.e., the first derivative of the
acceleration. Since we require ωB to be continuous and
differentiable, we need to ensure that the derivatives

of the jerk j and angular rate ψ̇ (snap s and ψ̈) are
continuous. Therefore, we define the vehicle state xv as
follows:

xv = [
pT vT aT jT sT ψ ωψ ω̇ψ

]T
. (17)

This state is needed for the local path planning in Sec-
tion 4.2. To summarize, p, v, a, j , s ∈ R

3×1 denote the po-
sition and its four derivatives, namely velocity, acceler-
ation, jerk, and snap, respectively, while ψ, ωψ, ω̇ψ ∈ R

denote the yaw angle, the angular rate, and angular
acceleration.

This aligns well with our work on position and trajec-
tory control for MAVs (Achtelik et al., 2013a), where we skip
the common attitude control loop and directly control the
angular rate ωB and thrust |t| of the helicopter. From the
planner described in the next section, we obtain the trajec-
tory for the optimized path as a set of high-order polyno-
mials. We sample these polynomials and their derivatives
(from p to j) at time intervals of 10 ms, and we use Eqs.
(10)–(16) to generate feed-forward commands for ω and |t|.
To account for disturbances and modeling errors, an error
controller compares the states p, v, a with the reference set
by the time-discrete samples of the polynomials. Errors are
turned into angular rate and thrust commands by feedback
linearization and are fed back to the angular rate controller,
keeping the vehicle on the desired trajectory. For the details
of this trajectory tracking controller, we refer the reader to
Achtelik et al. (2013a).

Figure 3 depicts the whole system setup. All flight-
relevant data are processed onboard on the appropri-
ate hardware, depending on computational power and
real-time constraints. Paths generated by our planner
are sent to the onboard computer, where the “trajec-
tory sampling” part generates feed-forward control signals
and reference trajectories as described previously in this
section.

Figure 3. System setup showing the controller and state estimation components of our system. The arrows denote the information
flow between high-level and low-level controllers and the state estimation framework. All flight-relevant data are processed
onboard, while paths generated by our planner are sent to the onboard computer, where the “trajectory sampling” part generates
feed-forward controls and reference trajectories

Journal of Field Robotics DOI 10.1002/rob

Achtelik et al.: Motion and Uncertainty Aware Path Planning • 681

3. PROBLEM STATEMENT

As in most path-planning approaches, the aim here is to (a)
plan the shortest or most energy-efficient path possible, (b)
ensure that this is a collision-free path, and lastly (c) incorpo-
rate the dynamic constraints of the vehicle in the planning.
In this work, we go a step further, and in addition to the
aforementioned constraints, our planner is required to be
motion- and state-uncertainty-aware, such that a realistic
path is planned for the vehicle in question. As a result, in
order to take the quality of the estimated state into account,
we constrain the planner to (d) excite the system such that
certain states of xf (biases, camera-IMU calibration, scale)
become observable and converge fast, and finally, (e) plan
a safe path incorporating the availability and the configu-
ration of visual landmarks used for our monocular visual
SLAM system.

To handle all of these requirements, we chose to employ
rapidly exploring random belief trees by Bry & Roy (2011)—
dubbed “RRBT” by the authors—as a planning back-end.
This method is able to handle both the dynamic constraints
of the vehicle and uncertainty in the vehicle state estimate.
Furthermore, due to the sampling-based nature of the ap-
proach, we do not need to make any assumptions on dis-
continuities in measurement uncertainty with respect to the
position of our vehicle in the workspace. This aspect be-
comes particularly important when incorporating (e), the
distribution of visual landmarks as a constraint within the
path-planning framework.

We note that, as the method presented here is a global
planner, we require a previously known map, providing in-
formation about visual landmarks and obstacles. The maps
used in this work were prebuilt using our vision-based
SLAM framework (Weiss et al., 2013) and man-in-the-loop
waypoint setting. Given the difficulty of the task at hand,
here we consider static obstacles (i.e., as outlined in the
known map) and offline path planning, while extending
to dynamic obstacles and online map creation and online
path (re)planning are natural future directions for a generic
system.

Looking at the application of the aforementioned re-
quirements within our framework, (a) and (b) essentially
drive the planning calculations, stating the problem we aim
to solve. During the local path planning within each RRBT
iteration, (c) is incorporated, while applying the findings of
vehicle dynamics and the helicopter’s differential flatness
(see Section 2.2). The property of differential flatness allows
us to reduce the sampling space to position and yaw only,
which reduces the complexity of the approach. Details of
the sampling strategy are explained in Section 4.3.

The last two constraints, (d) and (e), corresponding to
novel contributions of this work, are formulated in terms of
uncertainty, obeying a set of rules. First, for a path planned
up to a given stage, if insufficient motion has been planned
for, the uncertainty of the states requiring motion is not re-

duced. The planner, therefore, favors paths exhibiting mo-
tion and thus reducing uncertainty. As power consumption
is directly dependent on additional motion, the constraints
(a) and (d) compete for optimality. This forces the planning
framework to trade off between increasing excitation, to re-
duce the uncertainty of the vehicle’s states, and reducing
motion, for energy efficiency. As a result, the vehicle is just
as excited as necessary to reach the goal within the specified
uncertainty region. Secondly, the visual landmark configu-
ration and availability are incorporated during EKF updates
along local connections in the RRBT graph (cf. “propagate”
in Section 4.1): areas with no visual features available or bad
feature configurations will not update the state covariance,
or will update it in a certain direction only.

An example of a realistic system that could employ
the approach would be a “fly-over and land” maneuver of
an unmanned aerial vehicle (UAV) in an unknown environ-
ment. Before landing at a site, the vehicle first does a fly-over
maneuver at an obstacle-free altitude using GPS as the pri-
mary source of information for navigation. Upon building
the map of the area using cameras, the planner then plans
the approach and landing trajectory, where all system states
remain observable, obstacles are avoided, and the terrain
provides sufficient information for the visual localization
system.

4. PATH PLANNING TOWARD OPTIMIZED STATE
ESTIMATION

In the following, we discuss the main properties of the RRBT
algorithm as proposed by Bry & Roy (2011), and we describe
how it can be employed in our visual-inertial MAV state
estimation framework. The RRBT algorithm was chosen as
a planning back-end, since it can handle both the dynamic
constraints of the vehicle as well as uncertainty of the state
estimation.

4.1. The RRBT Approach

The basic idea of RRBT is to interleave graph construction
and search over the graph. Similarly to known planners,
such as rapidly exploring random graphs (RRG), the algo-
rithm operates on a set of state vertices V connected by edges
E, defining a graph in state space. In addition to the state v.x,
each state vertex v ∈ V owns a set N of so-called belief nodes
n ∈ N . Each belief node contains properties such as state es-
timate covariance �, a distribution over state estimates �,
and a cost c. Furthermore, it has pointers to its owning ver-
tex v and to a parent belief node: Being at a current vertex
vc, a unique path with the properties �, �, and c through
the graph is described by successively following the belief
nodes’ parents, starting from vc until vstart. With each belief
node having a pointer to its owning vertex, we can also re-
construct the “physical” path from vstart to vc. Multiple belief
nodes at one state vertex are possible since there could be

Journal of Field Robotics DOI 10.1002/rob

682 • Journal of Field Robotics—2014

multiple candidates for optimized paths to that vertex, e.g.,
one with smaller cost c and another with better �.

A RRBT iteration starts similar to a RRG iteration. After
sampling a new state vnew vertex, an approximate connec-
tion is made to the nearest state vertex vnearest. In addition,
given a successful (collision-free) connection, if there exists
one belief at vnearest that can be propagated without collision
along the newly created edge enew, vnew gets added to V .
Propagate means that a state estimation filter, such as the
EKF in Section 2.1, is initialized with the state at a starting
vertex and the properties of a belief node (�)2. This filter is
executed along enew, and a collision check is performed that
takes the uncertainty along that edge into account. Upon
success, exact connections are made forth and back to a set
of near vertices within a certain radius (Bry & Roy, 2011;
Karaman & Frazzoli, 2010), which also get propagated. Af-
ter successful propagation, a new belief node is added to
the corresponding vertex, if it is not dominated by an exist-
ing belief node at that vertex. Finally, a search queue keeps
track of all belief nodes involved in the previous steps, and
updates, expands, or removes them from the graph.

This approach allows us to set not only a start and goal
state, but also the uncertainty of the system at the start state
and a maximum uncertainty region at the goal. The goal is
not reached until both state and uncertainty constraints are
met. By keeping track of the system uncertainty in the way
described above, the algorithm plans a safe path to the goal
region, where it can localize itself while providing sufficient
excitation to keep the system’s states observable.

4.2. Local Path Planning

To connect a newly sampled state vertex to the nearest state
vertex, and to the set of near vertices, we need a local path
planner. While for algorithms such as rapidly exploring ran-
dom trees (RRT) an approximate connection from vnearest to
vnew is sufficient,3 we need to make additional exact connec-
tions between vnew and Vnear, and back from vnew to vnearest.
The main difficulty is that multicopters are underactuated
systems, while we require the fourth derivative of the po-
sition (snap) to be continuous (cf. Section 2.2). We want to
be able to include actuator constraints (snap), but also con-
straints such as maximum velocity and acceleration. Fur-
thermore, the vehicle should fly smooth paths without hav-
ing to stop at state vertices. As a further constraint, many
of those connections need to be created during graph con-
struction. Thus, we cannot afford sophisticated optimiza-
tion techniques.

A simple and fast solution was proposed by Webb &
van den Berg (2012), but it requires linearization of the dy-

2We omit � here since we assume sufficient measurements and the
vehicle stays close to the nominal trajectory.
3In this case, vnew only serves as a direction to grow the tree toward,
so it can simply be set to the state to where we were actually able
to steer.

namics around the hovering point. Motion constraints other
than actuator limitations are not easy to set. To enforce mo-
tion constraints, it sounds tempting to ignore those during
local planning and to treat a violation simply as a collision.
The result would be “no connection” and the next sample
would be taken. This may work for simpler approaches such
as RRT and just results in more samples. However, for RRG
or RRBT, this would lead to missed exact connections be-
tween existing state vertices that are actually collision-free.

We decided to adapt the minimum snap trajectory ap-
proach (Mellinger & Kumar, 2011) to our needs. This ap-
proach uses N th-order polynomials with more degrees of
freedom than initial and final (equality) constraints. It leaves
the remaining constraints to a solver, optimizing a quadratic
cost function and inequality constraints. Since we need to
enforce continuity to the fourth derivative of position (cf.
Section 2.2), we need at least 10 parameters (ninth-order
polynomials) plus some degrees of freedom for the opti-
mizer. Unlike in Mellinger & Kumar (2011), we chose to
optimize over the integral of the squared norm of the accel-
eration instead of the snap. The motivation for this choice
was to plan energy-efficient paths. Compared to snap, accel-
eration directly translates into permanent additional thrust
that all the motors have to provide, while snap just causes
particular motors to spin up/down quickly. This results in
the following optimization problem:

f (t) = t · c, t = [
1 t t2 · · · tN−1

]
, (18)

min
∫ T

t0

∥∥∥∥d2f (t)
dt2

∥∥∥∥ s.t., (19)

dnf (t0)
dtn

= dn(vstart . x)
dtn

; n = 0, . . . , 4, (20)

f (T) = (vend . x . p), (21)

dnf (T)
dtn

= dn(vend . x)
dtn

or free; n = 1, . . . , 4, (22)

where f (t) is an N th-order polynomial with coefficients
c0, . . . , cN of the position, and pstart and pend are the posi-
tion at the starting and ending state vertex, respectively. A
simplification is that we only need to connect two states,
i.e., we do not have any intermediate points and thus we
can keep t0 = 0, while T is the time needed to fly through
the local path. We apply the same methodology for yaw. We
optimize the integral over the angular rate while enforcing
continuity up to the second derivative of yaw. For a dis-
cussion on when to keep the constraints in Eq. (22) fixed or
leave them free, we refer to Section 4.3.

A beneficial property of the above optimization prob-
lem is the absence of inequality constraints, which makes
it solvable with a closed-form solution. However, this still
depends on a fixed time T to travel along the trajectory.

Journal of Field Robotics DOI 10.1002/rob

Achtelik et al.: Motion and Uncertainty Aware Path Planning • 683

Figure 4. Principle of the local-planning and sampling strategy: the proposed method picks samples from a four-dimensional
(position and yaw) state-space only, and creates an approximate connection from the nearest vertex using our local path-planning
method. The remaining state variables are left as free variables to the local planning method. Once the approximate connection is
made, the local planner fixes the free variables at the new vertex. This way, we “sample” the remaining state variables (derivatives
of position and yaw) in the direction of motion, avoiding useless state vertices. Then, exact connections are created back to the
nearest vertex and to the set of near vertices

Nonlinear optimization techniques with time as an addi-
tional parameter and inequality constraints are costly (and
numerically problematic), therefore we were seeking a sim-
ple and fast solution: We solve the aforementioned problem
with a conservative estimate for T and compare this solu-
tion to predefined maximum values for each derivative of
the position. Then, we scale the path time according to the
derivative that is closest to its motion constraint:

c(n) = abs
((

dnf (t)
dtn

)/
cn,max

)
, n = 1, . . . , 4, (23)

Tnew = T · max(c(n))1/argmax(c(n)). (24)

We then recompute the optimization problem with the new
path time Tnew, which is fast since we do not have inequality
constraints in the optimization problem. Note that the time-
scaling as proposed in Mellinger and Kumar (2011) does not
work in our case, since it also scales the boundary conditions
that are nonzero in our case.

4.3. Sampling of State Vertices

We decided to sample in the space of the differentially flat
outputs, position, and yaw angle, as previously defined.
The sampling state becomes

xs = [x y z ψ]T . (25)

First, this choice is motivated by reducing the complexity
of the sampling space. Second, the states of the vehicle are
tightly coupled and we want to sample in a way that is
physically reasonable. As an example, it is questionable to
sample a state in the positive direction with respect to a
current state while sampling a negative velocity. Therefore,
to create a connection from the nearest (in the sense of po-
sition and yaw) state vertex vnearest to the newly sampled
state vertex, vnew is created by applying the method from

Section 4.2 while leaving the derivatives of position in the
final condition from Eq. (22) free. After optimization of the
local path, these free variables result from the optimization
and define the full state at vnew. Since we optimize over the
acceleration, the optimizer will not decelerate the vehicle
toward the end of a local path, thus we implicitly sample
the velocity and its derivatives in the direction of motion
(Figure 4 illustrates the process).

4.4. Covariance Comparison

From the ordering of partial paths represented by belief
nodes, a belief node na dominates (is “better” than) a node
nb, as described by Bry & Roy (2011), if

na < nb ⇔ na .c < nb .c ∧ na .� < nb .� ∧ na .� < nb . �,

(26)

where n . c, n . �, and n . � are the properties of a belief
node (Section 4.1). Within an RRBT iteration, a new belief
node nb is only added to the set of belief nodes v . N if
it is not dominated (is not “worse”) by any existing belief
node na ∈ v . N of its state vertex v. In other words, a new
belief node is added to v . N if at least one of its properties
(n . c, n . �, n . �) is better than in any of the existing belief
nodes. After nb is added to v . N , another check is performed
if nb dominates any existing belief node at v, and it can
therefore prune it. In that case, nb has to be better in all
properties.

An important issue is how to compare two covariance
matrices, i.e., how to judge if one is “better” than the other.
While this may be intuitive for systems with two or three
dimensions in position, it becomes difficult for our system
with 24 states, not only because of the dimensionality, but
also because the states are not referring to the same physical
quantity or unit. As an example, how could an improvement

Journal of Field Robotics DOI 10.1002/rob

684 • Journal of Field Robotics—2014

of uncertainty in position be compared with an improve-
ment for the gyro biases? A very conservative measure for
na . � dominating nb . � would be

na . � < nb . � ⇔ min(eig(nb . � − na . �)) > 0. (27)

This in return means that any new belief node nb, whose co-
variance is better in only one dimension, would be added to
v · N . This results in many belief nodes being added, having
to be propagated and thus requiring additional computa-
tional resources. Especially in our high-dimensional case,
it is questionable if, for instance, a slight improvement in
gyro biases justifies adding a new belief node, while posi-
tion uncertainty has grown. Other options are comparing
the determinants, which could be thought of as the vol-
ume of the covariance ellipsoid, or the trace. However,
both cannot make a distinction between ellipsoids with
a high or low ratio of their axes. Furthermore, since our
states are referring to different physical quantities, states
with a smaller order of magnitude would dominate us-
ing the determinant method, and vice versa using the trace
method.

We decided to use the Kullback-Leibler (KL) divergence
(Kullback & Leibler, 1951) with respect to a reference covari-
ance matrix �ref as a performance measure for comparing
belief nodes. That is, we want to find out how similar to �ref

the other covariance matrix is. In our case, the KL divergence
for a normal distribution with zero mean is computed as

DKL = 1
2

[
trace

(
�−1

ref · n . �
)

− ln
(

det(n . �)
det(�ref)

)
− N

]
, (28)

where N is the dimension of our filter (error) state, which is
22 in our case (see Section 2.1). For �ref, we chose a diagonal
matrix with entries in the order of magnitude from a covari-
ance matrix of a fully converged state estimation filter that
we obtained during the experiments in Lynen et al. (2013)
and Weiss et al. (2012). The motivation for this choice is to
normalize the different orders of magnitudes of the filter
state variables while preferring round covariance ellipsoids
over those with a high axis ratio. Another advantage of this
method is that the KL divergence can be computed at the
creation time of its belief nodes rather than in Eq. (27) at ev-
ery belief comparison, which occur a lot during each RRBT
iteration.

As stated by Bry & Roy (2011), applying Eq. (26) when-
ever a new belief is added would result in a robot infinitely
circling in information-rich environments, since that would
always improve uncertainty slightly. Therefore, Bry and Roy
propose using a small tolerance factor ε to block these use-
less paths:

na � nb ⇔ (na . c < nb . c) ∧ (na . � + εI < nb . �)

∧ (na . � < nb . � + εI). (29)

4.5. RRBT for MAVs with Motion-dependent State
Estimation

In this section, we summarize our findings and show how
these are applied within the RRBT framework for a MAV.
At the beginning of each iteration, we sample a new state
vertex vnew for position and yaw (25) of the helicopter from
a uniform distribution. An approximate connection from
the nearest (position and yaw) state vertex vnearest to vnew is
created by applying the method from Section 4.3. The result
of this approximate connection defines the full state [Eq.
(17)] at vnew. This corresponds to the CONNECT(vnearest . x,
xv,rand) function in Bry & Roy (2011).

Having a collision free connection, i.e., an edge enew,
there needs to be at least one belief n ∈ vnearest . N that can
be propagated without collision along enew. This is done by
applying our state estimation filter from Section 2.1 on the
measurements, and system inputs (cf. Section 2.2) that were
generated while creating enew. The initial state xf,init of the
filter is set to

xf,init = [vnearest .x . pT , vnearest .x .vT , q̄(vnearest . aT , vnearest .ψ),

bT
ω, bT

a , λ, ps
i , q̄

s
i]T . (30)

Position and velocity can be directly obtained from
vnearest . x while the attitude quaternion q̄ is a function from
the acceleration and yaw angle at vnearest, as explained in
Section 2.2. The remaining states can be set constant.4 This
works since we are only interested in the evolution of the
state covariance during filter execution along the new edge.5

The initial state covariance for the filter is simply n . �. Dur-
ing propagation along enew, the path is also checked for pos-
sible collisions by taking the state covariance into account.
This corresponds to the PROPAGATE(e, n) function in Bry &
Roy (2011).

We define the cost for flying along an edge e as an
integral over the thrust

∫ |t|, minimizing the power con-
sumption and time necessary to reach the goal (cf. Section
4.2). This seems to contradict the need for excitation of the
vehicle for its states to stay observable. However, this is a
tradeoff between excitation reducing the uncertainty of the
vehicle’s states and energy efficiency. That is, the vehicle
gets just as excited as necessary to reach the goal within the
defined uncertainty region.

Upon the success of the previous propagation step, new
edges are created from vnew to vnearest, from vnew to Vnear, and
from Vnear to vnew. This time exact connections are created by
fixing all constraints in Eq. (22). Whenever an outgoing edge
is added to an existing vertex, all its belief nodes are added

4This would be states such as intersensor calibration or sensor bi-
ases, which do not change with the vehicle’s dynamics.
5A known issue of the EKF covariance estimate is that the estimated
value may not reflect a correct uncertainty due to linearization, as
discussed by Huang, Mourikis, & Roumeliotis (2011). For the sake
of simplicity, we neglect this issue in this paper.

Journal of Field Robotics DOI 10.1002/rob

Achtelik et al.: Motion and Uncertainty Aware Path Planning • 685

Figure 5. The area where parts of the field tests were conducted as seen from the onboard camera (right) with colored dots
indicating estimated landmark locations from the SLAM map. Start point (red cross) and end point (blue circle) of the experiments
are indicated. A series of containers, trees, and a large house create a realistic environment as found in many commercial applications
of UAVs, such as mapping, inspection, or aerial imagery (left image: Bing Maps)

to a search queue, which is then exhaustively searched. Its
APPENDBELIEF() function [cf. Bry & Roy (2011)] uses the
methods discussed in Section 4.4 to decide if a belief is
added to a state vertex (29) and if it dominates and thus can
prune existing beliefs (26).

Similarly to the approach in Webb & van den Berg
(2012), we want to reach the goal state exactly and centered
in the goal region. This is due to the region also defining
the maximum uncertainty at the goal. Also, we do not want
to wait until this state gets sampled by chance in the goal
state, since we believe that a nonoptimized path to the goal
in an early iteration is better than no path. In contrast to the
work of Webb & van den Berg (2012), we cannot simply add
the goal state to the set of near vertices. In this stage, the
goal state is not part of the set of state vertices and thus has
no belief nodes that can be propagated to/from the newly
sampled state. Therefore, we explicitly try to “sample” the
goal state before an iteration of the RRBT. If a successful
connection can be made, we proceed with a RRBT iteration,
using the goal as a newly sampled state. If this connection
fails, we proceed with a regular RRBT iteration by sampling
a random state.

We aim to keep the (tuning) parameter space small:
In fact, most parameters are system parameters, such
as maximum velocity or acceleration, which are easy to
figure out depending on the system at hand. The search
radius r around vnew for near vertices is determined by
r = [log(n)/n](1/d) according to Bry & Roy (2011) and Kara-
man & Frazzoli (2010), where n is the number of state ver-
tices and d is the dimension of the sampled state xs . ε in

Eq. (29) is probably the most interesting and only tuning
parameter. It determines how many (almost similar) belief
nodes are considered in the planning process. We set this
value to a small percentage of the reference ellipsoid’s mea-
sure (cf. Section 4.4).

5. EXPERIMENTAL SETUP

5.1. Navigation in an Outdoor Scenario

We conducted our field experiments at a medium-sized
maintenance area in which a large house, several 20-feet
containers, and trees provided a realistic scenario (see
Figure 5).

In our experiments, we use the visual SLAM algorithm
parallel tracking and mapping (PTAM) (Klein & Murray, 2007)
in an adapted version. We work with the same modifica-
tions to this SLAM algorithm as described in our previous
work (Weiss et al., 2013), which increase the robustness and
performance for the MAV navigation scenario. The algo-
rithm performs SLAM by building a local map and perform-
ing bundle-adjustment over it to estimate a map containing
landmarks from which the camera pose can be calculated
using PnP. Given the adaptations we carried out, the frame-
work allows us to perform large-scale navigation and map-
ping with constant computational complexity computed on
the platform’s embedded processor. The 6 DoF pose mea-
surements estimated with respect to this local map are fused
online with IMU measurements in an EKF for low latency
pose estimation. These online estimates are used for control
of the MAV at 1 kHz.

Journal of Field Robotics DOI 10.1002/rob

686 • Journal of Field Robotics—2014

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

Travelled distance [m]

C
ov

ar
ia

nc
e

[m
2]

0 50 100 150 200 250 300
-2

0

2

4

6

Travelled distance [m]

P
os

iti
on

 [m
]

SLAM cov x
SLAM cov y
SLAM cov z

Position x
Position y
Position z

Figure 6. The covariances as reported from the SLAM system when traversing the same area multiple times (closed-loop flying
in circles using the proposed framework for trajectory planning). Because we keep only a limited number of key frames, the
local map is rebuilt when revisiting the scene. Different structures at the ground provide less visual information than others.
This is reflected in the covariances, which for certain parts of the trajectory are higher than others. This repetitive pattern can
be seen in the figure, highlighting the fact that the localization is repeatable over multiple observations of the same scene. The
SLAM-landmark estimates can be stored in a map to later allow trajectory planning that takes the localization uncertainty into
account

5.2. Obtaining the Pose Covariance from a
Key-frame-based Visual SLAM System

For both simulation and real-world experiments, we as-
sume that a map of the environment is available for path
planning. For our experiments, we employ the same SLAM
framework to build this map as we do for online navigation
of the MAV (see Figure 6).

In contrast to EKF SLAM as in Davison et al. (2007),
the landmarks in key-frame-based SLAM systems are com-
monly not represented with uncertainty. Instead of deriving
the uncertainty in the camera pose from the propagation
of the pose and the visible landmarks as in EKF SLAM,
the covariance of the camera-pose is obtained from bundle
adjustment. This nonlinear optimization solves simultane-
ously for both three-dimensional (3D) map points in the
world and the camera locations over time. This is done
by minimizing the weighted-least-squares reprojection er-
rors of the 3D map points across all images (augmented by
noise with constant covariance). This provides an estimate
of the pose covariance �cam from the pseudoinverse S+ of
the innovation covariance S (Hartley & Zisserman, 2004), as
�cam = S+. The matrix S is a block matrix of dimensionality
n × n (n is the number of visible landmarks) with blocks Sik

defined as

Sjk = −
∑

i

W ij WT
ik, (31)

where W is the matrix of weighted Jacobians of the projec-
tion with respect to the camera location parameters a such
that W ij = [∂xij /∂aj]T �−1

xij
. To build �xij

, the reprojection
errors are weighted with a robust weighting function and
commonly augmented with (reprojection) noise, which is
independent of time and position of the map-point in the
world-frame.

We can estimate the covariance for an arbitrary pose in
the map by holding the landmarks fixed and applying PnP.
This pose is then provided to the planner, which uses it as
measurement in the state estimation pipeline. We compute
the pose-measurement covariance as in Eq. (31) without
minimizing the reprojection errors and adjusting the land-
mark locations. This provides the covariance of the sam-
pled pose T k

map with respect to the local map. This is the
same algorithm carried out online by the pose tracker of the
employed SLAM system (Klein, 2006).

It is common knowledge that already three known,
well-distributed 3D landmarks in the map constrain a

Journal of Field Robotics DOI 10.1002/rob

Achtelik et al.: Motion and Uncertainty Aware Path Planning • 687

camera pose in 6 DoF. The covariance computed from the
landmarks therefore drops significantly as soon as a min-
imal set of points is in the field of view. To account for
larger reprojection errors, false triangulation, and uncertain
tracker performance during the online-localization, we scale
this covariance by the number of features in the field of view
to give more weight to more densely populated areas with
evenly distributed features. This and an additional scaling
factor were discovered to match the covariances found dur-
ing experimental tracking runs with the employed SLAM
system. Another promising approach for obtaining covari-
ance estimates by learning through likelihood estimation
was very recently proposed by Vega-Brown, Bachrach, Bry,
Kelly, & Roy (2013). However, we leave this for future en-
hancements.

The proposed approach of using PnP and weighting
by feature count allows us to take feature-distribution, lack
of features, and their estimation uncertainty into account
for planning. However, since we only simulate the pose
estimation process, we are not able to estimate the localiza-
tion uncertainty under the influence of lighting or structural
changes. As with any feature detector, the recall of the em-
ployed FAST-like detector will deteriorate as the images
experience large changes in contrast. While we do not han-
dle this case explicitly, lighting changes result in a reduction
of feature density that is handled by the planner.

This means that poorly textured areas, or those affected
by lighting-induced contrast loss, are avoided either by fly-
ing around them or ascending to altitudes from which a
wider area can be overlooked, as shown in Figure 17. On the
other hand, areas with a higher density of features (feature-
rich), and a more homogeneous feature distribution over
the image, result in a pose estimate with lower covariance
as expected from PnP, and they are therefore preferred by
the planner.

The tracker implementation inside PTAM does not take
into account the quality of the landmarks (e.g., number of
observations) when estimating the camera pose with re-
spect to the local map. This does not allow us to weight
landmarks differently depending on their quality when es-
timating the pose-measurement covariance. We therefore
do not add poorly constrained landmarks to the map of the
environment in the first place, so that respective areas in the
map appear as unmapped.

From these data, the planner can then minimize the
covariance of the MAV state from start to goal. Using a
known map of the environment, the planner can optimize
the trajectory also for areas that are not in the field of view
from the current location of the MAV, and therefore provide
a globally optimal trajectory from start to goal.

To obtain the known map in which to perform path
planning, we flew the helicopter by remote control for sev-
eral flights, each about 8 min in length (close to the MAV bat-
tery lifetime), observing and mapping an area of 30 × 50 m2

multiple times. Flying a helicopter manually is, however,

not a requirement for the proposed method. Instead, one
could imagine a scenario in which a GPS-based flyover ma-
neuver of the scene at an obstacle-free altitude could pro-
vide a rough map, which is then used by the same vehicle for
approach and landing maneuvers closer to the ground. The
map would be used both for obstacle avoidance and finding
a path that provides sufficient information to perform the
requested maneuver. As future work, we plan to use sensor
information gathered using other platforms to reconstruct
the scenery offline. Using Google Earth 3D, satellite images,
or data captured by airplanes, one could construct a map of
the environment in question, allowing path-planning and
obstacle avoidance in previously unvisited areas.

Because the maps from different platforms or even dif-
ferent times of a day would make data-association challeng-
ing, we decided not to localize from the known map directly
when executing the planned trajectory. We rather use it as
a source of information about how well certain areas of the
map support vision-based localization. The actual maneu-
ver is then carried out with the SLAM system in the loop,
but building a new map while following the trajectory that
was optimized for the known map. Figure 6 shows an exper-
iment about repeatability of covariance computation along
a trajectory across different maps. Obviously there will be
differences in scene appearance when flying at different alti-
tudes. Our SLAM system, however, partially mitigates this
fact by detecting and tracking features at different image
scales.

5.3. Obstacle Avoidance

Obstacle avoidance is performed while making local con-
nections between two state vertices, as described in Section
4.2. We check local paths for collisions and do not add them
to the tree if a collision occurs. Furthermore, during uncer-
tainty propagation along the edges, we inflate the bounding
box around the vehicle by a multiple of the standard devi-
ation of position in order to plan a safe path. This factor
depends on the risk of hitting an obstacle, and is commonly
set to 3σ .

The collision checks are performed using OctoMap
(Hornung, Wurm, Bennewitz, Stachniss, & Burgard, 2013)
representing the environment, allowing for efficient stor-
age and fast look-ups. A straightforward creation of the
OctoMap could be done by adding the triangulated and re-
fined landmarks from the visual SLAM system to the map.
However, even after bundle-adjustment, the points in the
SLAM map contain a significant number of outliers, result-
ing in many spurious points blocking parts of the free space.
OctoMap provides an option to insert laser scans to the map,
consisting of a 3 DoF position and a set of points perceived
from this location. We can use this interface to add vir-
tual scans consisting of key-frame locations plus respective
landmark observations. The statistical model included in
OctoMap is then able to remove outlier points if they are

Journal of Field Robotics DOI 10.1002/rob

688 • Journal of Field Robotics—2014

(a) (b)

Figure 7. OctoMap representation (a) of a tree and two containers placed on its right. The photo on the right depicts the real
scenario. We observed that this map is sufficiently dense in order to plan paths around larger structures. The OctoMap is created
from sparse visual landmarks reconstructed during a flyover at a safe altitude

intersected by rays from these virtual scans. Thereby, we
can significantly reduce the number of outliers in the map
and make it useful for 3D obstacle avoidance.

The current approach handles static, previously known
obstacles only. Avoiding dynamic obstacles could be han-
dled in two stages: First, when a new obstacle is detected,
local (reactive) obstacle avoidance would steer around the
obstacle. Second, for small deviations from the originally
planned path, a local path toward the nearest state ver-
tex on the optimized path could be planned and followed
from then on. It may even be possible to use the proposed
RRBT approach locally with the newly detected obstacle.
For larger deviations or failure of local replanning, the
whole path will have to be replanned.

The density of the obstacles represented in the map
naturally depends on the amount of visual structure of these
objects. While we observed reconstructions of trees or larger
structures using our SLAM pipeline to be sufficiently dense
for obstacle avoidance, our system is not able to handle
structures with little/no visual texture, e.g., power lines.
An example OctoMap representation of a tree can be seen
in Figure 7. However, given that the proposed system is
not dependent on the source of map-information, this is
not a limitation of the work presented in this article, as one
could use, for example, dense-stereo or laser-based sensory
information to handle these situations. A strength of this
work is the ability to take into account the limitations of the
sensor-suite and the navigation and map-building modules
available to the system at the time of path planning.

6. EXPERIMENTS: FROM SIMULATION TO FIELD
TESTS

The requirements of the planner are manifold. First, we
want to plan paths that enable our motion-dependent states

to converge better and faster. This can be shown by com-
paring a direct connection between start and goal and a
path that our planner found and considered as optimal in
the sense that uncertainty gets reduced while just using
as much excitation as necessary. Secondly, the planner has
to be able to plan more complex paths for navigating in
a real-world scenario in the presence of (static) obstacles.
Finally, we are interested in planning paths where the on-
board sensors are able to localize reliably, or in other words,
maximizing the information. We start by showing simula-
tion experiments and then describe in detail how this can
be applied in real-world scenarios.

6.1. Motion-aware Path Planning

In the following, we pick a few representative states of our
state estimation filter and show how our proposed method
improves its estimates and convergence by exciting the ve-
hicle in the right way. The setup is the following: we want
to fly the MAV from a starting location along the x axis to
a goal location in a distance of 10 m. The resulting path
from our method can be seen in Figure 8, which differs only
slightly from a direct path.

We set an initial state covariance that we obtained dur-
ing real experiments with our framework described in Ly-
nen et al. (2013). We obtain the system inputs (acceleration,
angular velocity) and measurements for our state estimation
framework (Section 2.1) from the values computed in Sec-
tion 2.2 based on the position and its derivatives along the
partial paths. Measurement uncertainty for 3 DoF position
and 3 DoF attitude are kept uniform in this first experiment
for simplicity and in order to cancel out side effects. Since
the presented approach is a sampling-based technique, dif-
ferent measurement uncertainties can be incorporated, as
shown in Section 5.2 and in subsequent experiments.

Journal of Field Robotics DOI 10.1002/rob

Achtelik et al.: Motion and Uncertainty Aware Path Planning • 689

Figure 8. The proposed method computes and optimizes a trajectory taking into account the vehicle dynamics and generating
velocity (cyan) and acceleration (yellow) control inputs to follow the desired trajectory. The system uses the features of the SLAM
map to localize and estimate the covariance of pose updates on the path to the goal. This information is input to the planner, which
optimizes a nondirect path that reduces the uncertainty on biases and position. This allows the system to reach the goal region
defined by the transparent green sphere with sufficiently low covariance

0 5 10 15
0.7
0.8
0.9

1
1.1
1.2
1.3

x 10
-4

time [s]

co
v

sc
al

e

optimized path
direct path

Figure 9. Comparison of the evolution of uncertainty of the visual scale over time for the direct path (red) and the optimized path
(blue). While following the direct path takes substantially less time, the final scale covariance prevents reaching the goal region
with the required certainty, which in contrast can be achieved by following the optimized path

Figure 9 shows the evolution of the uncertainty of the
visual scale along the direct path and the optimized path.
The uncertainty is not only significantly lower for the op-
timized path, but also converges faster. The visual scale
directly influences the uncertainty and the quality of the po-
sition estimate. This is important when the vehicle moves
away from its origin, since the visual scale influences the
position estimate multiplicative [see Eq. (8)]. As a result,
even if the position was measured correctly and without
any drift, the position uncertainty grows with increasing
distance if the visual scale is uncertain. This is shown in
Figure 10: in the top left, the uncertainty of the position in
the x axis for the optimized path (blue) px decreases until
t = 5 s, which corresponds to the improvement of the visual
scale uncertainty in Figure 9 due to excitation of the system.
After t = 5 s, the visual scale has converged. Since the sys-
tem moves away from the origin in the positive x direction
(Figure 10, bottom left), the uncertainty for px starts grow-
ing again. The same applies to the direct path (red). Due to
the lack of excitation, the described behavior happens no-
tably faster. Since the trajectories for py (bottom right) stay

close to 0 on the right side of Figure 10, the uncertainty (top
right) for both the direct and the optimized path decreases,
while the optimized path is performing remarkably better.

The intersensor calibration state q̄s
i plays another im-

portant role (see Figure 11). This is a quaternion rotating
pose measurement from the sensor’s reference frame into
the reference frame of the IMU. Errors in this state would
cause IMU readings to be misaligned with pose measure-
ments, and thus affect the accuracy of other states. Also for
this state, the optimized path outperforms the direct path in
terms of uncertainty and convergence speed. The different
times of the optimized and direct path result from actuator
limitations that we set.

Figure 12 shows the evolution of the cost and the path
length over the iterations of the algorithm. Note that the
small number of iterations denotes the number of updates
of the optimized path. During the simulation, 150 state ver-
tices were sampled in a volume around the direct path, hav-
ing 750 belief nodes. The cost decreases (top) as expected
while the path length (bottom) occasionally increases. This
is natural, since we chose the integral of the squared norm

Journal of Field Robotics DOI 10.1002/rob

690 • Journal of Field Robotics—2014

0 5 10 15
2

4

6

8

10
x 10

-3

co
v

p x [m
]

0 5 10 15
2
3
4
5
6
7

x 10
-3

co
v

p y [m
]

0 5 10 15
0

2

4

6

8

time [s]

p x [m
]

0 5 10 15

-0.4

-0.2

0

0.2

time [s]

p y [m
]

optimized path
direct path

Figure 10. Behavior of the uncertainty for the direct path (red) and the optimized path (blue) in position for the x axis (left) and
the y axis (right). While the time required to follow the direct path is substantially lower than for the optimized path, the optimized
path leads to a substantially lower final position uncertainty. Since the visual scale error is multiplicative, the uncertainty of the
position grows after the initialization phase with increasing distance to the origin. The trajectory in the y axis stays close to zero,
which is why the uncertainty decreases

0 5 10 15

1.5

1.6

1.7

1.8

1.9

x 10
-5

time [s]

co
v

q ci [r
ad

]

roll (opt)
pitch (opt)
yaw (opt)
roll (direct)
pitch (direct)
yaw (direct)

Figure 11. Comparison of the intersensor calibration state q̄s
i . The optimized path outperforms the direct path in terms of

uncertainty and convergence speed. This state relates the measurements of the visual SLAM system to the IMU frame of reference,
which means its uncertainty and convergence rates are of major interest

of the acceleration as cost. This graph shows that we obtain
major improvements in the quality of the state estimation,
with only a slightly longer path (≈ 0.6 m). In fact, the direct
path would not have reached the goal with its covariance
ellipsoid within the uncertainty region around the goal.

6.2. Obstacle Avoidance

Figure 13 shows a path-planning scenario with two obsta-
cles. The figures show the first successful path, an interme-
diate path, and the final optimized path (from left to right).
Cyan arrows indicate velocity while yellow arrows refer to
the acceleration. Figure 14 shows the uncertainty on the left
and the corresponding cost on the right (in Figure 13: left,
blue; middle, red; right, magenta). It can be seen that the
planner trades cost for uncertainty, as long as the final un-
certainty is within the predefined bounds. Figure 14 also
shows the relation between uncertainty and the required

motion: During the almost straight sections of Figure 13,
middle/right, uncertainty grows, while it decreases during
acceleration/deceleration phases at the beginning and at
the end.

6.3. Closed-loop Experiments

First, we evaluated the tracking performance of the con-
troller in the Flying Machine Arena (Lupashin, Schöllig,
Sherback, & D’Andrea, 2010), which is equipped with a
Vicon motion capture system, providing us with ground-
truth. To isolate the evaluation of the performance of the
proposed controller from potential visual SLAM inaccura-
cies, we use the Vicon system for pose measurements as
well. However, we distort the Vicon readings by adding de-
lay, reducing the frame rate, and adding noise. We planned
fast trajectories as shown in Figure 15, reaching track speeds
of up to 3.5 m

s . The figure on the left is flown in a plane only,

Journal of Field Robotics DOI 10.1002/rob

Achtelik et al.: Motion and Uncertainty Aware Path Planning • 691

1 2 3 4 5 6
70

80

90

100

110

co
st

1 2 3 4 5 6

10.6

10.7

10.8

10.9

11

11.1

iterations

pa
th

 le
ng

th
 [m

]

Figure 12. Cost and path length over the number of optimized path updates. During the simulation, 150 state vertices were
sampled, resulting in 750 belief nodes. Finally, a path slightly longer than the direct path yields remarkably better results for our
state estimation filter

(a) (b) (c)

Figure 13. First, intermediate, and best path found by the planner. These paths correspond to the blue, red, and magenta lines/bars
in Fig. 14

while on the right, we added the third dimension. The poly-
nomial path segments representing position and its deriva-
tives are sampled at discrete time intervals of 10 ms, gen-
erating reference trajectories and feed-forward commands
for the trajectory tracking controller. In these experiments,
we obtained a root-mean-square (RMS) error of 11.8 and
7.7 cm for the trajectories, respectively, which is sufficiently
accurate for our outdoor experiments.

With these results at hand, we tested the entire system
at the outdoor test-site detailed in Section 5.1. We planned
paths using obstacle as well as covariance information from
the map with the approaches presented in this article. These
paths, represented by polynomial segments according to
Section 4.2, are uploaded to the vehicle. On the vehicle, we
executed the full navigation pipeline consisting of visual
localization (PTAM), state estimation, and control as pre-
sented in Sections 2.1 and 2.2. We conducted flights in the
outdoor area depicted in Figure 5, all from the same start
location to the same goal. The paths correspond to subse-
quently improved solutions of the optimized path from the
planner. The flights were successfully conducted from the

start to the goal—we show two paths with their uncertain-
ties in Figure 16. The left side shows the covariances com-
puted by the planner (bold) and the covariances reported
by the state estimation framework. The graphs on the right
denote the trajectories for position for each path (blue: top
right, red: bottom right). We can see that the uncertainties
from the planning phase closely match the actual uncertain-
ties reported during the experiments, confirming the simu-
lation results. Also, similar observations as for the obstacle
avoidance can be made: during straight path segments, i.e.,
no acceleration, covariance grows as, for instance, during
0 < t < 12 s for the first path and during 0 < t < 8 s for the
second path. Covariance, in contrast, shrinks during accel-
eration phases, such as for 12 < t < 26 s and around t = 10
s for the first and the second path, respectively.

Our visual-inertial navigation system onboard the ve-
hicle was thoroughly tested in our previous work (Achte-
lik et al., 2012; Weiss et al., 2013). In addition, we showed
successful trajectory flights in this section first. Secondly,
we showed that the vehicle is able to follow trajectories
planned with the proposed method and that the estimated

Journal of Field Robotics DOI 10.1002/rob

692 • Journal of Field Robotics—2014

0 2 4 6 8 10 12 14 16 18
0

0.01

0.02

0.03

0.04

time[s]

co
v

po
si

tio
n

[m
2]

2 4 6 8 10 12 14 16 18

0

1

2

3

x 10
−3

time[s]

co
v

sc
al

e

0 2 4
0

20

40

60

80

100

120

140

160

180

optimized path

co
st

Figure 14. The left side shows the uncertainty in the 3D position and scale over several iterations of the optimized path, while
the right plot shows the corresponding cost. Corresponding colors refer to one version of the optimized path. Blue refers to Figure
13(a), red to Figure 13(b), and magenta to Figure 13(c). Note that while the cost has to decrease, the uncertainty may be higher for
the best path, compared to the other iterations, as long as it stays within the defined goal-region

Figure 15. Fast trajectory flight. The track speed reached up to 3.5 m
s and we obtained a RMS error of 11.8 and 7.7 cm, respectively,

for left and right (Achtelik et al., 2013a)

covariances align well with the covariances from the real ex-
periments. Having these results let us show the properties
of our approach in more complex scenarios in the following
experiments, where we focus on the outcome of the plan-
ning method in the given real scenario.

6.4. Uncertainty-aware Path Planning

In this experiment, we show that our approach is capable
of planning feasible paths not only around obstacles, but
also where the vision system is realistically able to localize
appropriately. To improve clarity, we discuss here the plan-
ning module isolated from the other parts of the system.
We require a minimum of five features to be successfully
projected into the field of view before actually computing
the measurement covariance as described in Section 5.2.
Fewer features are treated as a “collision” in the planner,
and the corresponding edge is removed. As a side note,

one could allow traversing featureless areas if there is suffi-
cient free space around the vehicle. This would be required,
since integrating the IMU readings during this period with-
out incorporating external measurements would result in a
significant increase in position uncertainty. However, this
assumes that the localization system is able to relocalize
reliably after traversing this area—a risk that we want to
avoid. Figure 17 shows one of the experiments: On the left,
landmarks (features) are well distributed and the vehicle
can fly an almost straight path. On the right, we cut out a
stripe of landmarks. A possible scenario of that is, for ex-
ample, crossing an asphalt road or a river, which usually
have very poor visual features. In this case, the planner has
to increase altitude such that landmarks on the boundary
region of that stripe become visible in the field of view of
the onboard camera.

Figure 18 shows an example in which a path around a
featureless area is chosen. Since there is a way around this

Journal of Field Robotics DOI 10.1002/rob

Achtelik et al.: Motion and Uncertainty Aware Path Planning • 693

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

time [s]

co
v

po
si

tio
n

[m
2]

#1
#2

0 5 10 15 20 25 30
−10

0

10

20

30

time [s]

po
si

tio
n

[m
]

x y z

0 5 10 15 20 25 30
−10

0

10

20

30

time [s]

po
si

tio
n

[m
]

x y z

Figure 16. Closed-loop experiments in the outdoor scenario detailed in Section 5.1, using the full navigation pipeline. The left
side shows the covariances for two different paths, while the right side shows the corresponding trajectories for position (blue: top
right, red: bottom right). Bold lines denote the covariances computed by the planner, while thin lines correspond to the covariances
reported by the state estimation framework

Figure 17. Taking into account the uncertainty and visibility of landmarks (green dots) in the planning phase, the proposed
approach provides trajectories that allow the vehicle to safely traverse featureless areas. Given equally distributed landmarks (left),
the vehicle can fly a relatively straight path to the goal region denoted by the transparent sphere 20 m away. However, if the map
contains featureless areas (here artificially truncated), the planner calculates a path that comprises an increase in altitude for more
landmarks to become visible. This situation might occur, for instance, when crossing asphalt roads or rivers, which usually have
very few visual features. The landmarks are also used in an OctoMap (shown in the lower row images) for obstacle avoidance,
which is computed according to Section 5.3

Journal of Field Robotics DOI 10.1002/rob

694 • Journal of Field Robotics—2014

Figure 18. Example of navigating around featureless areas
from start (circle) to goal (sphere) instead of across at higher
altitude, saving energy. At the same time, the planner mini-
mizes the covariance by choosing a path providing sufficient
excitation. Corresponding covariances and costs are shown in
Figure 19

spot, energy for increasing altitude is conserved, and paths
around are planned sideways. The evolution of uncertain-
ties, cost, and computation time can be seen in Figure 19.
We also added a straight line connection for comparison:
As soon as the feature-rich area is left, uncertainty increases
rapidly. The uncertainty ellipsoid collapses shortly before
the goal to reasonable values again—however, like above,
this would require a perfectly working relocalization. Fur-
thermore, the bounding box for obstacle checking would
have to be highly enlarged, since crossing this area is essen-
tially “blind” free-flight. It is also important to notice how
the scale uncertainty gets reduced for the nondirect paths.
In contrast, for the direct path, the scale uncertainty remains
unchanged. This is because the scale has no time-dependent
dynamics, combined with no updates being performed dur-
ing the “blind” phase.

One could argue that featureless areas could be mod-
eled as obstacles in general. However, this would either
entirely exclude that area without the possibility of travers-
ing it in higher altitude, or it would raise the question of
how high this obstacle would have to be modeled (i.e., how
untraversable it is), which would translate to an extra ad
hoc tuning parameter. In contrast, by tightly incorporat-
ing measurement uncertainty in the planning phase, the
planner finds an appropriate altitude to traverse planning
around featureless areas and avoiding bad feature configu-
rations (e.g., all features close to a line)—this would also
permit seamless integration of additional sensors in the
estimation.

In a final experiment, we demonstrate how the pre-
sented approach can handle heterogeneous environments,
consisting of all the scenarios analyzed thus far. Figure 20
shows a path starting in front of the house (see Figure 5),
navigating around a featureless area similar to Figure 18
first, before ascending to a safer altitude similar to Figure 17
over a sparser area. This is performed while avoiding ob-
stacles, using the OctoMap-based occupancy grid described
in Section 5.3, which finally guides the vehicle to the goal
safely. The overall path length for this experiment was 67 m.

6.5. Computational Cost and Speedups

Computational complexity with respect to the number of
belief nodes and iterations is discussed in Bry & Roy (2011).
The main cost in our approach originates from two parts:
first, from the computation of the uncertainty of the pose
measurements in the real map (Section 5.2), and second,
from the propagation of covariances along the edges of the
RRBT. Since edges get revisited repetitively after adding
state vertices and the following expansion of beliefs, we can
cache the measurement uncertainties computed during the
first propagation along that edge. An implementation using
KD-trees ensures efficient and fast look-up of these cached
covariances. Adding new edges to the cache requires rebal-
ancing the KD-tree, but since edges get visited many times,
this additional computational effort pays off. The other less
obvious option was proposed by Prentice & Roy (2009) with
the so-called “one-step transfer function” for propagating
state uncertainties over edges within their proposed belief
road maps. This one-step transfer function is computed dur-
ing the first propagation along an edge based on the mea-
surement and system input uncertainties. Once computed,
this transfer function can propagate any covariance of an
initial belief at once onto the final belief at the end of the
edge. This also captures the expensive measurement uncer-
tainty computation and its caching.

The drawback of the one-step transfer function method
is that we lose the ability to perform collision checks along
the edges based on our current state uncertainty. Since the
uncertainty gets propagated in one step, we cannot inflate
the bounding box around the vehicle by the state uncer-
tainty (according to the risk the operator is willing to take)
at intermediate steps of the edge. For this reason, we retain
caching measurement uncertainties in the current imple-
mentation.

All path computations from this paper were computed
on a recent Intel R©CoreTMi7-based laptop within the range
of minutes if not seconds for some smaller problems. Some
computation times can be seen in Table I. It is important to
notice that a first path is found relatively fast, and then gets
gradually refined. Future work will focus on effective model
reduction and an efficient search through the belief nodes,
reducing complexity and enabling real-time operation.

Journal of Field Robotics DOI 10.1002/rob

Achtelik et al.: Motion and Uncertainty Aware Path Planning • 695

10 20 30 40 50 60

−0.05

0

0.05

0.1

0.15

0.2

0.25

time[s]

co
v

po
si

tio
n

[m
2]

10 20 30 40 50 60

0.5

1

1.5

2

x 10
−4

time[s]

co
v

sc
al

e

1 2 3 4 5
0

100

200

300

400

500

600

700

optimized path
co

st
1 2 3 4 5

0

50

100

150

200

250

300

350

optimized path

co
m

pu
ta

tio
n

tim
e

[s
]

optimized path
direct path

direct path

Figure 19. Uncertainty, cost, and computation times for avoiding featureless areas as shown in Figure 18. At the same time, the
optimized paths provide sufficient excitation to reduce the position and scale covariance. The graphs also show the results of a
direct path to the goal: at t ≈ 9 s, no visual features are visible in the camera field of view. Without any visual updates, the covariance
grows fast—a situation that can be effectively avoided by using our method

(a) (b) (c)

Figure 20. Full path from the take-off area in front of the house (see Fig. 5), avoiding a feature-less area and flying over a group
of containers to the goal area. The overall traversed path length for this experiment was 67 m. In (a), it can be seen that the path
is preferably planned over feature rich areas that allow precise localization. (b) and (c) show the landmarks and the resulting
OctoMap representation which is used for obstacle avoidance

7. CONCLUSIONS

In this work, we showed how to combine a state-of-the-art
path-planning framework with a complex state estimation
framework for self-calibrating systems used on MAVs. As
such, power-on-and-go systems need excitation before all
their states can be rendered observable. In this article, we
demonstrated how effective path planning can not only im-
prove the error in the state estimates, but it can also allow
for faster convergence after (re)initialization, all while plan-
ning a collision-free path (avoiding static obstacles). To our
knowledge, this is the first work employing a path-planning

framework such as RRBT, which takes into account the he-
licopter dynamics while maximizing the information along
the path with the complex state estimation framework on
the MAV. Thus far, only the one or the other has been shown.

We do not provide another path-planning method.
Instead, we formulated our problem of MAV navigation,
given the dynamic constraints of the MAV and its state esti-
mation and visual localization framework, to be solved with
a generic path-planning framework. Within this formula-
tion, a fast and effective local planning method connecting
state vertices was developed, which takes MAV dynamics
into account. Instead of sampling in the high-dimensional

Journal of Field Robotics DOI 10.1002/rob

696 • Journal of Field Robotics—2014

Table I. Timings for selected experiments that we performed.

Experiment
Time to first

path (s)
Total

time (s) iterations

Uncertainty-aware
planning, w/o gap
(Figure 17 left)

1 24 152

Uncertainty-aware
planning, w/ gap
(Figure 17 right)

51 51 633

Uncertainty-aware
planning around
(Figure 18)

25 328 413

Full navigation
scenario (Figure 20)

19 825 1,141

space describing the dynamics of the MAV (up to fourth
derivative of position), sampling of state vertices was re-
duced to position and yaw only, while the remaining states
were optimized by the local planner. Comparison of high-
dimensional covariance ellipsoids turned out to be compli-
cated due to incompatibility of states, such as, for instance,
position and gyro biases. A solution was proposed that pro-
vides a good tradeoff between completeness and computa-
tional complexity (in terms of the number of belief nodes),
based on a reference ellipsoid found in experiments.

We put the proposed methodology to the test via a
diverse set of experiments, demonstrating that we can suc-
cessfully plan paths in a medium-sized outdoor environ-
ment, taking into account the quality of localization and
the full vehicle dynamics, in order to render all motion-
dependent states observable. We first presented simulation
experiments under simplified conditions, showing that a
direct path may not be the best path, given the observ-
ability constraints from the state estimation framework.
These experiments also showed that accurate estimation of
the scaling factor of monocular vision-based localization—
which needs excitation—is essential for reducing position
uncertainty when flying further away from the origin, high-
lighting the necessity of a planning approach such as that
proposed herein. Experiments in a real scenario were con-
ducted in which a map of the environment was created
by a flyover at a safe altitude. Insight was given on how
this map provides the planner with uncertainty and static
obstacle information. The experiments show that safe and
feasible paths were planned while keeping state estima-
tion uncertainty within the desired bounds. If necessary,
obstacles were circumnavigated, and featureless areas were
avoided by either flying around or by increasing altitude for
more features to become visible in the field of view of the
camera. Closed-loop experiments running the entire navi-
gation pipeline confirmed that the covariance computed by

the planner matches the covariance reported by the state
estimation framework during the experiments.

Computational complexity in the described setup is
certainly an issue. However, in the current state, we are
close to real-time and we believe that full real-time opera-
tion will be possible for the presented scenario. At its cur-
rent state, the system is intended for offline planning due
to computational complexity, which also excludes obstacle
avoidance for dynamic objects. We do not expect the plan-
ning area to be largely extended. In contrast, by reasonably
reducing the planning area—experiments showed that opti-
mized paths are close to straight line connections—and opti-
mizations such as computing “one-step transfer functions”
(Prentice & Roy, 2009) as well as a more efficient search
through belief-nodes, we believe that the proposed method
is real-time-capable and can thus be extended toward online
mapping and replanning. The mentioned optimizations are
on the road map for future enhancements, but they do not
change the outcome of the methodology presented here.

In terms of scalability and in a broader context, we be-
lieve our approach is very suitable for local to medium-sized
planning problems. We envision tasks such as approach,
takeoff, and landing, as well as inspection tasks in con-
fined spaces, for which we believe our approach scales very
well. For larger scenarios, paths on a coarser scale could, for
instance, be planned with probabilistic road maps, using
straight-line connections. The proposed method can then
be employed to plan paths along these straight connections
while taking into account the full dynamics of the vehi-
cle and the motion requirements from the state estimator.
This would still be close to optimality, since our experiments
showed that an optimized path does not deviate much from
a straight connection.

In conclusion, we provided insight, discussion, and ex-
periments on how to address the challenges arising with
autonomous MAV operation based on visual localization
during motion planning under uncertainty, resulting from
observability requiring motion and bad visual feature con-
figurations. Groups working on visual localization within
the control loop are very familiar with the issues we ad-
dressed, therefore we see this article as a valuable contribu-
tion to the MAV research community.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Adam Bry and Nick
Roy for providing their generic RRBT framework and many
helpful discussions, which led to the results of this work.

REFERENCES

Achtelik, M. W., Achtelik, M. C., Weiss, S., & Siegwart, R. (2011).
Onboard IMU and monocular vision based control for
MAVs in unknown in- and outdoor environments. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Shanghai, China.

Journal of Field Robotics DOI 10.1002/rob

Achtelik et al.: Motion and Uncertainty Aware Path Planning • 697

Achtelik, M. W., Lynen, S., Chli, M., & Siegwart, R. (2013a).
Inversion based direct position control and trajectory fol-
lowing of micro aerial vehicles. In Proceedings of the
IEEE/RSJ Conference on Intelligent Robots and Systems
(IROS), Tokyo, Japan.

Achtelik, M. W., Lynen, S., Weiss, S., Kneip, L., Chli, M.,
& Siegwart, R. (2012). Visual-inertial SLAM for a small
helicopter in large outdoor environments. In Proceed-
ings of the IEEE/RSJ Conference on Intelligent Robots
and Systems (IROS). Video: http://markus.achtelik.net/
videos/IROS2012video.mp4.

Achtelik, M. W., Weiss, S., Chli, M., & Siegwart, R. (2013b).
Path planning for motion dependent state estimation on
micro aerial vehicles. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
Karlsruhe, Germany.

Bry, A., & Roy, N. (2011). Rapidly-exploring random belief trees
for motion planning under uncertainty. In Proceedings of
the IEEE International Conference on Robotics and Au-
tomation (ICRA), Shanghai, China.

Bryson, M., Johnson-Roberson, M., & Sukkarieh, S. (2009).
Airborne smoothing and mapping using vision and in-
ertial sensors. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), Kobe,
Japan.

Choudhury, S., Scherer, S., & Singh, S. (2013). RRT*-AR:
Sampling-based alternate routes planning with applica-
tions to autonomous emergency landing of a helicopter.
In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA).

Cover, H., Choudhury, S., Scherer, S., & Singh, S. (2013). Sparse
tangential network (SPARTAN): Motion planning for mi-
cro aerial vehicles. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
Karlsruhe, Germany.

Davison, A. J., Molton, N. D., Reid, I., & Stasse, O. (2007).
MonoSLAM: Real-time single camera SLAM. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
29(6), 1052–1067.

Fraundorfer, F., Heng, L., Honegger, D., Lee, G. H., Meier,
L., Taskanen, P., & Pollefeys, M. (2012). Vision-based au-
tonomous mapping and exploration using a quadrotor
MAV. In Proceedings of the IEEE/RSJ Conference on In-
telligent Robots and Systems (IROS).

Hartley, R., & Zisserman, A. (2004). Multiple view geometry in
computer vision, 2nd ed. Cambridge University Press.

He, R., Prentice, S., & Roy, N. (2008). Planning in information
space for a quadrotor helicopter in a gps-denied environ-
ment. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), Pasadena, CA.

Hermann, R., & Krener, A. (1977). Nonlinear controllability and
observability. IEEE Transactions on Automatic Control,
22(5).

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., &
Burgard, W. (2013). OctoMap: An efficient probabilistic
3D mapping framework based on octrees. Autonomous
Robots. Software available at http://octomap.github.com.

Huang, G. P., Mourikis, A. I., & Roumeliotis, S. I. (2011).
An observability-constrained sliding-window filter for
SLAM. In Proceedings of the IEEE/RSJ Conference on
Intelligent Robots and Systems (IROS) (pp. 65–72), San
Francisco.

Karaman, S., & Frazzoli, E. (2010). Incremental sampling-based
algorithms for optimal motion planning. In Proceedings
of Robotics: Science and Systems (RSS).

Kavraki, L. E., Švestka, P., Latombe, J.-C., & Overmars, M. H.
(1996). Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, 12(4), 566–580.

Kelly, J., & Sukhatme, G. S. (2011). Visual-inertial sensor fu-
sion: Localization, mapping and sensor-to-sensor self-
calibration. International Journal of Robotics Research
(IJRR), 30(1), 56–79.

Klein, G. (2006). Visual tracking for augmented reality. Ph.D.
thesis, University of Cambridge.

Klein, G., & Murray, D. W. (2007). Parallel tracking and map-
ping for small AR workspaces. In Proceedings of the In-
ternational Symposium on Mixed and Augmented Reality
(ISMAR).

Kuffner, J. J., & LaValle, S. M. (2000). RRT-connect: An efficient
approach to single-query path planning. In Proceedings
of the IEEE International Conference on Robotics and Au-
tomation (ICRA).

Kullback, S., & Leibler, R. A. (1951). On information and suffi-
ciency. The Annals of Mathematical Statistics, 22(1), 79–86.

Lupashin, S., Schöllig, A., Sherback, M., & D’Andrea, R. (2010).
A simple learning strategy for high-speed quadrocopter
multi-flips. In Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA).

Lynen, S., Achtelik, M. W., Weiss, S., Chli, M., & Siegwart,
R. (2013). A robust and modular multi-sensor fusion ap-
proach applied to MAV navigation. In Proceedings of the
IEEE/RSJ Conference on Intelligent Robots and Systems
(IROS), Tokyo, Japan.

Mellinger, D., & Kumar, V. (2011). Minimum snap trajectory
generation and control for quadrotors. In Proceedings of
the IEEE International Conference on Robotics and Au-
tomation (ICRA), Shanghai, China.

Mellinger, D., Kushleyev, A., & Kumar, V. (2012). Mixed-integer
quadratic program (MIQP) trajectory generation for het-
erogeneous quadrotor teams. In Proceedings of the IEEE
International Conference on Robotics and Automation
(ICRA).

Mirzaei, F., & Roumeliotis, S. (2008). A Kalman filter-based al-
gorithm for IMU-camera calibration: Observability anal-
ysis and performance evaluation. IEEE Transactions on
Robotics and Automation, 24(5), 1143–1156.

Prentice, S., & Roy, N. (2009). The belief roadmap: Efficient
planning in belief space by factoring the covariance. Inter-
national Journal of Robotics Research, 8(11-12), 1448–1465.

Richter, C., Bry, A., & Roy, N. (2013). Polynomial trajectory
planning for aggressive quadrotor flight in dense indoor
environments. In Proceedings of the International Sympo-
sium on Robotics Research (ISRR).

Journal of Field Robotics DOI 10.1002/rob

http://markus.achtelik.net/videos/IROS2012video.mp4
http://markus.achtelik.net/videos/IROS2012video.mp4
http://octomap.github.com

698 • Journal of Field Robotics—2014

Roy, N., & Thrun, S. (1999). Coastal navigation with mobile
robots. In Advances in Neural Information Processing Sys-
tems (NIPS ’99).

Shen, S., Michael, N., & Kumar, V. (2011). Autonomous multi-
floor indoor navigation with a computationally con-
strained MAV. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA).

Turpin, M., Mohta, K., Michael, N., & Kumar, V. (2013). Goal as-
signment and trajectory planning for large teams of aerial
robots. In Proceedings of Robotics: Science and Systems
(RSS).

Vega-Brown, W., Bachrach, A., Bry, A., Kelly, J., & Roy, N.
(2013). CELLO: A fast algorithm for covariance estima-
tion. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), Karlsruhe,
Germany.

Webb, D. J., & van den Berg, J. (2012). Kinodynamic RRT*: Op-
timal motion planning for systems with linear differential
constraints. CoRR, abs/1205.5088.

Weiss, S. (2012). Vision based navigation for micro helicopters.
Ph.D. thesis, ETH Zurich.

Weiss, S., Achtelik, M., Chli, M., & Siegwart, R. (2012). Versatile
distributed pose estimation and sensor self-calibration for
an autonomous MAV. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), St.
Paul, MN.

Weiss, S., Achtelik, M. W., Lynen, S., Achtelik, M. C., Kneip,
L., Chli, M., & Siegwart, R. (2013). Monocular vision for
long-term MAV state-estimation: A compendium. Journal
of Field Robotics, 30(5), 803–831.

Weiss, S., & Siegwart, R. (2011). Real-time metric state estima-
tion for modular vision-inertial systems. In Proceedings
of the IEEE International Conference on Robotics and Au-
tomation (ICRA), Shanghai, China.

Wzorek, M., Kvarnström, J., & Doherty, P. (2010). Choosing
path replanning strategies for unmanned aircraft systems.
In International Conference on Automated Planning and
Scheduling (ICAPS).

Journal of Field Robotics DOI 10.1002/rob

