Consortium

Max-Planck-Institut für biologische Kybernetik
http://www.kyb.mpg.de
Project coordination and management, development of novel human-machine interfaces for steering and navigation of PAVs.

The University of Liverpool
http://www.flightlab.liv.ac.uk
Modelling of PAV concepts, exploring and defining flying qualities, and development of an efficient paradigm to train people for flying PAVs.

École Polytechnique Fédérale de Lausanne
http://www.epfl.ch
Development of control strategies for collision avoidance, formation flying, automation algorithms for determining landing spots, and automatic take-off and landing.

Eidgenössische Technische Hochschule Zürich
http://www.asl.ethz.ch
Development of control strategies for automatic take-off, navigation and landing of PAVs.

Karlsruher Institut für Technologie
http://www.itas.fzk.de
Investigation of the socio-technological context, the infrastructural environment, the potential impact on society and social expectations towards PAVs via reflexive analysis.

Deutsches Zentrum für Luft- und Raumfahrt
http://www.dlr.de/flugsystemtechnik
Evaluation of newly developed technologies using the Flying Helicopter Simulator, and support on the development of dynamic models and Highway-in-the-Sky displays.

Project data

myCopter
Enabling Technologies for Personal Aerial Transportation Systems
Collaborative project, nr. 266470
EU Programme FP7-AAT-2010-RTD-1
1 January 2011 – 31 December 2014

Contact

Scientific coordination
Prof. Dr. Heinrich Bülthoff
Max Planck Institute for Biological Cybernetics
Spemannstraße 38
72076 Tübingen
Germany
Phone: +49 7071 601-601
heinrich.bueithoff@tuebingen.mpg.de

Evaluation of newly developed technologies using the Flying Helicopter Simulator, and support on the development of dynamic models and Highway-in-the-Sky displays.

* Photo by Buck Engineering and Consulting GmbH
Prevailing congestion problems with ground-based transportation and the anticipated growth of traffic present a major challenge in developing solutions that combine the best of ground-based and air-based transportation. The optimal solution could include the creation of a personal aerial transportation system (PATS) that can overcome the problems associated with current modes of transport.

We propose an integrated approach to enable a viable PATS based on Personal Aerial Vehicles (PAVs) envisioned for daily work and leisure commutes, flying at low altitudes in urban environments. Such PAVs are likely to be autonomous to a high degree without requiring conventional air traffic control.

Our consortium consists of expert partners that will address the development of advanced technologies necessary for a viable PATS, as well as perform socio-technological evaluations to assess the impact of a PATS on society. To this end, dynamic models for potential PAVs will be designed and implemented on motion simulators and a manned helicopter. An investigation into the required flight competencies of PAV users will be conducted, which will guide a user-centric design of suitable human-machine interfaces. Furthermore, the flight interfaces must allow for fast and efficient pilot training.

Automation of aerial systems in cluttered environments: PAVs will likely be autonomous for safety-critical phases of the flight, such as obstacle avoidance and landing spot selection for safe arrival and departure. Research will address collision avoidance with other traffic and swarming of vehicles along established routes such as highways to minimise the impact on urban areas.

Exploring the socio-technological environment: PAVs will have a large impact on society, raising numerous questions concerning user expectations and interactions with new aerial transportation systems. It is important to engage in dialogue with experts, like regulators and stakeholders, and potential users of a PATS.

Within the project, state-of-the-art research facilities will be used. Unmanned aerial vehicles will serve as testbeds for the development of automation algorithms. Two ground-based simulators, the CyberMotion Simulator and the HELIFLIGHT-R Flight Simulator, will be used in experimental evaluations with humans in the loop. In addition, we aim to implement aspects of our automation technologies and human-machine interface designs into the Flying Helicopter Simulator, a fly-by-wire / fly-by-light research helicopter operated by DLR.

The project has been broken down into distinct phases. In the first year, we will identify key socio-technological issues, experimental paradigms and automation requirements, thus laying a coherent foundation for subsequent research. In the second year, initial tests will be performed with automation algorithms and evaluations with humans in the loop will be conducted on the experimental paradigms. The third year will entail experiments on the human-machine interface and training issues, and will include simulations and tests that will be performed with automation in flight. In the final year, results from exploration of the socio-technological environment will be summarised for public dissemination. In addition, part of the technological advancements will be implemented on the Flying Helicopter Simulator.